\(abcd=1\) 

CMR \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

Ta có: \(\frac{a}{abc+ab+a+1}=\frac{acd}{\left(abc+ab+a+1\right)cd}=\frac{acd}{abc^2d+abcd+acd+cd}\)

\(=\frac{acd}{c+1+acd+cd}\left(abcd=1\right)\)

\(\frac{b}{bcd+bc+b+1}=\frac{b}{bcd+bc+b+abcd}=\frac{1}{acd+cd+c+1}\)

\(\frac{d}{dab+da+d+1}=\frac{dc}{\left(dab+da+d+1\right)c}=\frac{dc}{abcd+acd+cd+c}=\frac{cd}{1+acd+cd+c}\)

=> \(\frac{acd}{acd+cd+c+1}+\frac{1}{acd+cd+c+1}+\frac{c}{acd+cd+c+1}+\frac{cd}{acd+cd+c+1}\)

=> đpcm

AH
Akai Haruma
Giáo viên
19 tháng 11 2019

Lời giải:

Sử dụng điều kiện $abcd=1$ có:

\(M=\frac{a}{abc+ab+a+1}+\frac{ab}{abcd+abc+ab+a}+\frac{abc}{ab.cda+ab.cd+abc+ab}+\frac{abcd}{abc.dab+abc.da+abc.d+abc}\)

\(=\frac{a}{abc+ab+a+1}+\frac{ab}{1+abc+ab+a}+\frac{abc}{a+1+abc+ab}+\frac{1}{ab+a+1+abc}\)

\(=\frac{a+ab+abc+1}{abc+ab+a+1}=1\)

Vậy $M=1$

NV
27 tháng 11 2018

\(A=\dfrac{a}{abc+ab+a+1}+\dfrac{ba}{abcd+abc+ab+a}+\dfrac{\dfrac{c}{cd}}{\dfrac{acd}{cd}+\dfrac{cd}{cd}+\dfrac{c}{cd}+\dfrac{1}{cd}}+\dfrac{\dfrac{d}{d}}{\dfrac{dab}{d}+\dfrac{ad}{d}+\dfrac{d}{d}+\dfrac{1}{d}}\)

\(A=\dfrac{a}{abc+ab+a+1}+\dfrac{ab}{1+abc+ab+a}+\dfrac{\dfrac{1}{d}}{a+1+\dfrac{1}{d}+\dfrac{1}{cd}}+\dfrac{1}{ab+a+1+\dfrac{1}{d}}\)

\(abcd=1\Rightarrow\dfrac{1}{d}=abc;\dfrac{1}{cd}=ab\)

\(\Rightarrow A=\dfrac{a}{abc+ab+a+a}+\dfrac{ab}{abc+ab+a+1}+\dfrac{abc}{a+1+abc+ab}+\dfrac{1}{ab+a+1+abc}\)

\(\Rightarrow A=\dfrac{a+ab+abc+1}{abc+ab+a+1}=1\)

29 tháng 7 2018

tớ biết nhưng k nói đâu

8 tháng 2 2020

bằng 1 bn nha!!!

27 tháng 2 2017

Vì  abcd=1 nên : a=1 ;b=1;c=1;d=1

       thay số vào pt ta đc : \(\frac{1}{1+2\cdot1+3\cdot1\cdot1+4\cdot1\cdot1}\)\(\frac{1}{2+3\cdot1+4\cdot1\cdot1+1\cdot1\cdot1}\)\(\frac{1}{3+4\cdot1+1\cdot1+2\cdot1\cdot1\cdot1}\)\(\frac{1}{4+1+2\cdot1\cdot1+3\cdot1\cdot1\cdot1}\)

                    Tương đương : \(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)\(\frac{4}{10}\)=\(\frac{2}{5}\)

                          

27 tháng 2 2017

a , b , c , d cũng có thể âm mà Long

6 tháng 12 2016

\(\frac{b}{bc+b+1}+\frac{a}{ab+a+1}+\frac{c}{ac+c+1}\)

\(=\frac{ac.b}{ac\left(bc+b+1\right)}+\frac{c.a}{c\left(ab+a+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{1}{c+1+ac}+\frac{ac}{1+ac+c}+\frac{c}{ac+c+1}=1\)

7 tháng 12 2016

a= b+c=a : b=a+c; c= a=b voi nhung bai nhan chia cung vay