Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v
Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities
Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.
Bài 3: Tí check đề cái đã.
4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2
=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc
Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)
1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0
=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm
Ta có: \(\left(1-a\right)\left(1-b\right)=1-a-b+ab\)
-Vì \(a>0;b>0\) nên ab > 0
Suy ra: \(\left(1-a\right)\left(1-b\right)>1-a-b\) (*)
-Vì c < 1 nên 1-c > 0
Tương tự (*) => \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>1-a-b-c\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>\left(1-a-b-c\right)\left(1-d\right)\)
\(d< 1\Rightarrow d-1>0\)
Vậy \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>1-a-b-c-d\)
=> (đpcm)
Đặt \(A=\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)
\(A=\left(1-a-b+ab\right)\left(1-c-d+cd\right)\)
\(A=1-c-d+cd-a+ac+ad-acd-b+bd-bcd+ab-abc-abd+abcd+bc\)
\(A=1-a-b-c-d+cd\left(1-a\right)+ac\left(1-b\right)+bc\left(1-d\right)+bd\left(1-c\right)+abcd\)
Có: 0<a,b,c,d<1
=> \(cd\left(1-a\right)>0;ac\left(1-b\right)>0;bc\left(1-d\right)>0;bd\left(1-c\right)>0;abcd>0\)
\(\Rightarrow A>A-cd\left(1-a\right)-ac\left(1-b\right)-bc\left(1-d\right)-bd\left(1-c\right)-abcd=1-a-b-c-d\)
đpcm
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Rightarrow\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]-\left[\left(a-d\right)-\left(b-c\right)\right]\left[\left(a-d\right)+\left(b-c\right)\right]=0\)
\(\Rightarrow\left(a+d\right)^2-\left(b+c\right)^2-\left(a-d\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a^2+d^2+2ad-b^2-c^2-2bc-a^2-d^2+2ad+b^2+c^2-2bc\)
\(\Rightarrow4ad-4bc\)
\(\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
nhan ra het roi dung cosi
1 cai la ra lien
\(abcd=1;ab=\frac{1}{cd};ad=\frac{1}{bc};ac=\frac{1}{bd}\)
Ta có : \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)
\(=a^2+b^2+c^2+d^2+ab+ac+bc+bd+dc+ad\)
\(=a^2+b^2+c^2+d^2+\frac{1}{cd}+cd+\frac{1}{bd}+bd+\frac{1}{bc}+bc\)
\(\ge4\sqrt[4]{abcd}+2\sqrt{\frac{1}{cd}.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{bc}.bc}\)(Cauchy)
\(=4+2+2+2=10\)(đpcm)
Dấu"=" xảy ra \(\Leftrightarrow a=b=c=1\)