K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2015

Để mik làm cho nha

Ta có: a+b=c+d => a= c+d-b

cd-ab=1

cd-(c+d-b)b=1

cd-cb-db+b^2=1

d(c-b)-b(c-b)=1

(d-b)(c-b)=1

Do a,b,c,d là các số nguyên nên ta có:

 Th1 :d-b=1 và c-b=1 suy ra c=d

Th2: d-b=-1 và c-b=-1 suy ra c=d

Vậy c=d trong cả hai trường hợp.

7 tháng 12 2017

\(a+b=c+d\Rightarrow a=c+d-b\)

Thay vào: \(ab+1=cd\)

\(\Rightarrow\left(c+d-b\right).b+1=cd\)

\(\Leftrightarrow cb+db-cd+1-b^2=0\)

\(\Leftrightarrow b\left(c-d\right)-d\left(c-d\right)+1=0\)

\(\Leftrightarrow\left(b-d\right)\left(c-d\right)=-1\)

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
Mà (b-d)(c-b)=-1 nên có 2 TH: 

\(TH1:\hept{\begin{cases}b-d=1;c-d=1\\d=b+1;c=b+1\end{cases}}\)

\(\Rightarrow c=b\)

\(TH2:\hept{\begin{cases}b-d=1;c-d=-1\\d=b-1;c=b-1\end{cases}}\)

\(\Rightarrow c=d\)

Vậy: Từ 2 TH, ta có: c = d.

14 tháng 8 2016

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

14 tháng 8 2016

cop

9 tháng 10 2019

Bài bạn làm rất chuẩn em tham khảo nhé! ( chỉ cần nhấn vào link màu xanh ) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

27 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=bk ; c=dk

Suy ra:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

26 tháng 11 2016

Đặt a/b = c/d = k

=> a = bk; c = dk

Thay vào đk đề bài ta đc:

(bk)2 + b2/ (dk)2 + d2 ​ = b2 (k2 + 1)/d2(k2 + 1) = b/d (2)

ab/cd = bk.b/dk.d = b2.k/d2.k = b2/d2 = b/d (1)

Từ (1) và (2) suy ra a2 + b2/c2 + d2 = ab/cd → ĐPCM.

27 tháng 1 2019

\(b,a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)

Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)

Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)

mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)

Câu a để nghĩ tiếp 

27 tháng 1 2019

bn làm câu b được không