Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3+b3+c3 - 3abc >= 0
<=>(a+b+c)(a2+b2+c2-ab-bc-ca) >= 0
bn tự c/m ngoặc thứ 2 >= 0 (nhân 2 vào),có a+b+c >= 0 ->đpcm
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\ge0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)
Bài thiếu điều kiện \(a+b+c\ge0\)
Dễ dàng chứng minh \(a^2+b^2+c^2-ab-ac-bc\ge0\)nên ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c=0\end{cases}}\)
Cách này có được không ta?
Đặt \(\left(a^3;b^3;c^3\right)\rightarrow\left(x;y;z\right)\) và thêm đk a,b,c>0
Chuẩn hóa x + y + z = 1 (*) thì ta cần chứng minh:
\(1\ge3\sqrt{xyz}\Leftrightarrow f\left(x;y;z\right)=1-27xyz\ge0\)
Ta nhận thấy nếu thay x và y bởi \(t=\frac{\left(x+y\right)}{2}\) thì (*) vẫn thỏa mãn.
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=t^2\)
Suy ra \(f\left(x;y;z\right)\ge1-27t^2z=f\left(t;t;z\right)\)
Thay x;y bởi \(t=\frac{\left(x+y\right)}{2}\) vào (*) suy ra được: \(z=1-2t\)
Khi đó ta cần chứng minh: \(f\left(t;t;z\right)=1-27t^2\left(1-2t\right)\ge0\)
\(\Leftrightarrow54t^3-27t^2+1\ge0\Leftrightarrow\left(6t+1\right)\left(3t-1\right)^2\ge0\) (đpcm)
Dấu "=" xảy ra khi x = y và t = 1/3 tương đương với x = y =z =1/3
Tương đương với x = y =z (do đầu bài ta chuẩn hóa x + y + z = 1)
Tức là a = b =c
Lời giải:
Áp dụng BĐT Cauchy:
\(\frac{a^3}{bc}+b+c\geq 3\sqrt[3]{a^3}=3a\)
\(\frac{b^3}{ca}+c+a\geq 3\sqrt[3]{b^3}=3b\)
\(\frac{c^3}{ab}+a+b\geq 3\sqrt[3]{c^3}=3c\)
Cộng theo vế thu được:
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}+2(a+b+c)\geq 3(a+b+c)\)
\(\Rightarrow \frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\geq a+b+c\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0
+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:
a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)
Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc
=>a3+b3+c3\(\ge\)3abc
Bất đẳng thức xảy ra khi a=b=c(ĐPCM)
Chúc bn học tốt
C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)
Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
a)Áp dụng BĐT AM-GM ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Xảy ra khi \(a=b\)
b)Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Xảy ra khi \(a=b=c\)
c)Áp dụng BĐT AM-GM ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Xảy ra khi \(a=b=c\)
==" s t nhớ là bất đẳng thức cosi dùng cho số dương nhỉ ?
\(\left(a-b\right)^2\ge0\)
<=>\(a^2-2ab+b^2\ge0\)
<=>\(a^2+b^2\ge2ab\)
b) Ta có\(\left(a-b\right)^2\ge0\)(1)
\(\left(b-c\right)^2\ge0\)(2)
\(\left(a-c\right)^2\ge0\)(3)
Cộng vế với vế ba đẳng thức (1),(2),(3) ta đc
\(a^2+b^2-2ab+b^2+c^2-2bc+a^2+c^2-2ac\ge0\)
<=>\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
<=>\(a^2+b^2+c^2\ge ab+bc+ac\)
câu a bạn phân tích \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ac\right)\)
rồi suy ra bình thường nha
\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow a^4-2^2b^2+b^4+c^4-2c^2d^2+d^4-4abcd+2a^2b^2+2c^2d^2=\left(a^2+b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab+cd\right)^2\)
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
\(\Rightarrow ab+bc+ca\ge abc\left(a+b+c\right)\)
Lại có: \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(a^2+b+c\right)}{3}\ge abc\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge3abc\)
Lớp 8 nên chắc biết Bunhiacopxki chứ. Nếu ko biết thì google.
Dùng Bunhiacopxki để chứng minh cái này: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\)
\(\ge\left(\sqrt{x}.\frac{a}{\sqrt{x}}+\sqrt{y}.\frac{b}{\sqrt{y}}+\sqrt{z}.\frac{c}{\sqrt{z}}\right)^2=\left(a+b+c\right)^2\)
hay\(\left(x+y+z\right)\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng BĐT trên ta có:
\(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\left(a^2+b^2+c^2\right).\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Áp dụng BĐT Bunhiacopxki, ta có: \(\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\ge\frac{1}{3}\)
Vậy BĐT được chứng minh
Áp dụng Bđt Cô si 3 số dương ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Đẳng thức xảy ra khi \(a=b=c\)
Đpcm