Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a+b}{2\sqrt[3]{abc}}+\dfrac{b+c}{2\sqrt[3]{abc}}+\dfrac{c+a}{2\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\) (AM-GM 4 số hạng)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn
Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng
Lời giải:
Áp dụng hệ quả của BĐT AM-GM:
\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)
\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)
\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)
Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:
Áp dụng BĐT AM-GM:
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)
Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)
\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)
Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)
\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.
\(VT\ge\sum\left(\dfrac{a^3}{2a+b+c}\right)=\sum\left(\dfrac{a^3}{\sum a+a}\right)=\sum\dfrac{a^3}{3+a}\)
Ta có BĐT phụ :
\(\dfrac{a^3}{a+3}\ge\dfrac{11a-7}{16}\)(*)
\(\Leftrightarrow\left(16a+21\right)\left(a-1\right)^2\ge0\) (luôn đúng với mọi a>0)
Áp dụng BĐT (*) ta có :
\(\sum\dfrac{a^3}{3+a}\ge\dfrac{11\sum a-21}{16}=\dfrac{33-21}{16}=\dfrac{12}{16}=\dfrac{3}{4}\)
nhầm rồi , mình sorry , \(VT\ge\sum\left(\dfrac{2a^3}{2a+b+c}\right)=\sum\left(\dfrac{2a^3}{3+a}\right)\)
bạn chọn BĐT phụ là :
\(\dfrac{2a^3}{a+3}\ge\dfrac{11a-7}{8}\)
Áp dụng BĐT AM - GM ta có:
$ \frac{a^3}{(1 + b)(1 + c)} + \frac{1 + b}{8} + \frac{1 + c}{8} \geq \frac{3}{4}a$
$\frac{b^3}{(1 + c)(1 + a)} + \frac{1 + c}{8} + \frac{1 + a}{8} \geq \frac{3}{4}b$
$\frac{c^3}{(1 + a)(1 + b)} + \frac{1 + a}{8} + \frac{1 + b}{8} \geq \frac{3}{4}c $
Cộng vế theo vế ta được:
$ P + \frac{2(a + b + c) + 6}{8} \geq \frac{3}{4}(a + b + c) $
$<=> P \geq \frac{1}{2}(a + b + c) - \frac{3}{4}$
$=> P \geq \frac{3}{4} (dpcm)$
a) sai đề
b) để ý rằng :Theo AM-GM
\(VT=\dfrac{a+b}{2\sqrt[3]{abc}}+\dfrac{b+c}{2\sqrt[3]{abc}}+\dfrac{c+a}{2\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\)
Dấu = xảy ra khi a=b=c.
P/s: Min ra xấp xỉ \(14,4809\)( wolframalpha.com)