Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thang cân có 2 góc ở đáy bằng nhau => C^=D^=45° và A^=B^=135°
Kẻ AH vuông CD, BK vuông CD.
Theo tính chất đoạn chắn ta có AB//HK và AB=HK=13cm
=>DH=BK=(DC-AB)/2=6cm
Tam giác ADH vuông tại H có góc D=45° nên là tam giác vuông cân => AH=DH=6cm
Ta có diện tích hình thang=(AB+CD)*AH/2=(13+25)*6/2=114cm^2
Kẻ AH vuông góc với CD
Tính AH bằng cách tính DH là ra thôi bạn
Hình thang cân có hai góc ở đáy bằng nhau
\(\Rightarrow\widehat{C}=\widehat{D}=45^o\) , \(\widehat{A}=\widehat{B}=135^o\)
Kẻ AH vuông CD, BK vuông CD.
Theo tính chất đoạn chắn ta có AB//HK và AB = HK = 13 cm
\(\Rightarrow DH=BK=\frac{\left(DC-AB\right)}{2}=\frac{12}{2}=6\) (cm)
\(\Delta ADH\) vuông tại H. Lại có \(\widehat{D}=45^o\) nên \(\Delta ADH\) cân.
\(\Rightarrow AH=DH=6cm\)
Vậy diện tích hình thang là:
\(S_{ABCD}=\frac{\left(AB+CD\right)AH}{2}=\frac{\left(13+25\right)6}{2}=114cm^2\)
Gọi O là giao điểm của AC, BD, Kẻ BF ⊥ CD, Kẻ BE // AC
Xét ΔABD và ΔBAC có:
AD=BC (htc ABCD)
AB chung
góc DAB = góc ABC (htc ABCD)
⇒ △ABD=△BAC (c-g-c)
⇒ góc BAC = góc BAD = 45 độ
⇒ ΔOAB vuông cân tại O hay AC ⊥ BD ⇒ BE ⊥ BD ⇒ ΔBED vuông ở B
Tứ giác ABEC: BE // AC, AB // CE nên là hbh
⇒ BE = AC = BD = 7cm, AB = CE
ΔABD và ΔBCE có đường cao ứng với 2 đáy AB, CE bằng nhau cùng bằng BF, lại có AB = CE nên SABD = SBCE
⇒ SABCD = SBDE = \(\dfrac{BD.BE}{2}\) = \(\dfrac{7.7}{2}\) = \(\dfrac{49}{2}\)= 24,5 cm2
Vậy ...