K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: ∠(ADC) = ∠(BCD) (gt)

⇒ ∠(ODC) = ∠(OCD)

⇒ΔOCD cân tại O (dhnb tam giác cân)

⇒ OC = OD

OB + BC = OA + AD

Mà AD = BC (hình thang ABCD cân)

⇒ OA = OB

Xét ΔADC và. ΔBCD:

AD = BC (hình thang ABCD cân )

AC = BD (hình thang ABCD cân)

CD chung

Do đó ΔADC và ΔBCD (c.c.c)

⇒ ∠D1= ∠C1

⇒ΔEDC cân tại E (dhnb tam giác cân)

⇒ EC = ED nên E thuộc đường trung trực CD

OC = OD nên O thuộc đường trung trực CD

E ≠ O. Vậy OE là đường trung trực của CD.

Ta có: BD= AC (hình thang ABCD cân)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

Mà OA = OB (cmt)

Nên O thuộc đường trung trực của AB

E ≠ O. Vậy OE là đường trung trực của AB.

28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB

 

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ            ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

   
0
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ            ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

 

0
22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.