Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Đăng Khang tham khảo nhé:
Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
hay ta có OK đi qua trung điểm của AB và CD.
a) Xét tam giác ABD và tam giác BAC có
AB chung
goc BAD = góc ABC ( ABCD là hình thang cân )
AD=BC ( ABCD là hình thang cân )
Vậy tam giác ABD = tam giác BAC ( c-g-c)
=> góc ABD = góc BAC => tam giác AOB cân tại O
b)
Ta có KD=KC=> K nằm trên đường trung trực DC (*)
Ta lại có :
OD=DB-OB
OC=AC-AO
mà BD=AC ( 2 đường chéo hình thang cân ABCD )
OB=AO (tam giác AOB cân tại O)
=> OD=OC => O nằm trên đường trung trực DC (**)
Xét tam giác IAD và tam giác IBC có
AI=IB( I là trung điềm AB)
góc IAD = góc IBC ( ABCD là hình thang cân)
AD=AB ( ABCD là hình thang cân)
Vậy tam giác IAD = tam giác IBC(c-g-c)
=> ID=IC=> I nằm trên đường trung trực DC (***)
Từ (*)(**)(***)=> I,O,K thẳng hàng
nha . Chúc bạn học tốt
vì oa=ob
=>tam giác aob là tam giác cân tại o (đn tam giác cân)
=>góc oab=góc oba
mà ab//cd
=> abcd là hình thang cân
đúng thì k cho mik vs ạ