\(MA^2+MC^2=MD^2+MB^2\)

b,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Bạn hỏi tự vẽ hình nhá

a) Kẻ \(ME\perp AD,MF\perp BC,MG\perp AB,MH\perp CD\)

\(MA^2+MC^2=MB^2+MD^2\)( cùng bằng \(ME^2+MG^2+MF^2+MH^2\))

b) Chứng mih tương tự=>kết quả không đổi. 

Ta có: \(MA^2+MC^2=MB^2+MD^2\)(cùng bằng \(ME^2=AE^2+MF^2+CF^2\))

Vậy khi điểm M nằm ngoài hình chữ nhật ABCD thì đẳng thức ở câu a) vẫn đúng.

14 tháng 1 2018

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM = AE + EM = CM+BM

14 tháng 1 2018

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1

11 tháng 12 2015

Hướng dẫn thôi nha
Câu a) : Vẽ MH vuông góc với AC, MK vuông góc với BD
Ta có MA x MC = MH x AC = 2 x R x MH
Ta CM \(^{ }MA^4\)\(^{ }MC^4\)\(^{ }16R^4\)\(8^{ }R^2MH^2\)
Tương tự MB^4 + MD^4 = 16R^4 - 8R^2 x HK^2
Kq bằng \(^{ }24R^4\)
Câu b) áp dụng cô si cho 4 số kq bằng \(^{ }6R^4\)
Tick cho mình nhaaaaaaaaa :*

16 tháng 10 2021

khó thế 

mới học lớp 3 bài này khó quá anh chị cho bài về bảng nhân đi ạ 000000

3 tháng 2 2020

(mình chỉ ghi gợi ý rồi bn tự làm nha)

a, gBMD nội tiếp đường tròn=> gBMD =90 độ

ABCD là hình vuông => gDOC = 90 độ 

=> tứ giác ODME nội tiếp => gODM + gOEM = 180 độ 

mà gOEM = gBEC => dpcm

b,gABM nội tiếp chắn cung AM

gACM nội tiếp chắn cung AM => gABM = gECM

gAMB nội tiếp chắn cung AB 

gBMC nội tiếp chắn cung BC

mà cung AB = cung BC ( AB = BC )

=>gAMB = gEMC 

=> hai tam giác đồng dạng vì có hai góc bằng nhau

4 tháng 2 2020

bạn nào giúp mình câu c với ạ! Cảm ơn nhiều!!

4 tháng 2 2019

C M A B D Q P K O'

a) Bằng các góc nội tiếp, ta có: ^BCD = ^BAD = ^BAQ = ^BPQ và ^DBC = ^DAP = ^PAQ = ^QBP

Do đó: \(\Delta\)BCD ~ \(\Delta\)BPQ (g.g) (đpcm).

b) Theo câu a: ^BCD = ^BPQ hay ^BCK = ^BPK => 4 điểm K,P,C,B cùng thuộc 1 đường tròn

=> Đường tròn (KCP) đi qua B. Mà B cố định nên ta có ĐPCM.

24 tháng 4 2020

a) ta có: \(\widehat{BCD}=\widehat{BAD}\)(cùng chắn cung BD)

                            \(=\widehat{BPQ}\)(vì cùng chắn cung BQ)

Tương tự \(\widehat{BDC}=\widehat{BAC}\)(cùng chắn cung BC)

                             \(=\widehat{BQP}\)(cùng bù \(\widehat{BAP}\))

=> \(\Delta BCD~\Delta BPQ\left(gg\right)\)

b) Vì \(\widehat{BCD}=\widehat{BPQ}\Rightarrow\widehat{BPK}=\widehat{BCK}\)

=> Tứ giác BCPK nội tiếp

=> Đường tròn ngoại tiếp \(\Delta\)PCK đi qua B cố định