Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(\sqrt{2012}=abc+bcd+cda+dab-a-b-c-d=\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\)
\(\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)
\(GT\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(a+c\right)\left(ad-1\right)\right]^2\le\left[\left(bc-1\right)^2+\left(b+c^2\right)\right]\)
\(\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]=\left(b^2+1\right)\left(c^2+1\right)\left(a^2+1\right)\left(d^2+1\right)\)
P/s: Mình không chắc đâu ! Tham khảo nha!

https://diendantoanhoc.net/topic/76281-bdt-thi-h%E1%BB%8Dc-sinh-gi%E1%BB%8Fi-t%E1%BB%89nh-l%E1%BB%9Bp-9-nam-2011-2012/

ta có
\(abc+bcd+cda+dab=1\Leftrightarrow abc+d\left(\right.a+b+c\left.\right)=1\)
biểu thức
\(P=4\left(\right.a^3+b^3+c^3\left.\right)+9d^3\)
ta có
\(a^3+b^3+c^3\geq3abc\Rightarrow4\left(\right.a^3+b^3+c^3\left.\right)\geq12abc\)
vì
\(P\geq12abc+9d^3\left(\right.1\left.\right)\)
từ trên ta có
\(abc+d\left(\right.a+b+c\left.\right)=1\)
Nếu \(d\) lớn thì \(a b c\) nhỏ ⇒ vế phải (1) lớn
Nếu \(d\) nhỏ thì \(a b c \approx 1\) ⇒ khi đó
\(P\approx12\cdot1+0=12\)
Vậy
giá trị nhỏ nhất của \(P\) là
\(minP=12\)
đạt được khi \(a = b = c = 1 , d \rightarrow 0^{+}\).
do đó
\(12\)
Về cơ bản thì bài này ko giải được
Theo kĩ thuật cân bằng hệ số AM-GM:
Gọi x là 1 hằng số dương nào đó, ta có:
\(a^3+b^3+x^3.d^3\ge3x.abd\)
Tương tự thì:
\(a^3+c^3+x^3.d^3\ge3x.acd\)
\(b^3+c^3+x^3.d^3\ge3x.bcd\)
Cộng vế:
\(2\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x.\left(bcd+cda+abd\right)\)
Đồng thời: \(x.\left(a^3+b^3+c^3\right)\ge3x.abc\)
Cộng vế:
\(\left(x+2\right)\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x\)
So sánh với biểu thức P thì ta cần tìm x sao cho:
\(\frac{x+2}{4}=\frac{3x^3}{9}\Rightarrow4x^3-3x-6=0\)
Đây là 1 pt ko thể giải được (ra 1 kết quả x đủ đẹp)

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

Chú ý đến giả thiết a + b + c = 1 ta viết được \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1-c\right)\left(1+c\right)}}=\)\(\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}=\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}\)\(=\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)
Mặt khác áp dụng bất đẳng thức Cauchy ta được \(a^2+b^2+2\left(ab+bc+ca\right)\ge2ab+2\left(ab+bc+ca\right)=\)\(2\left(ab+bc\right)+2\left(ab+ca\right)\)và \(a+b\ge2\sqrt{ab}\)
Từ đó dẫn đến \(\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{ab}{2\sqrt{ab}\sqrt{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)\(=\frac{1}{2}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)
Mà theo bất đẳng thức quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có: \(\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\le\sqrt{\frac{1}{4}\left(\frac{ab}{2\left(ab+bc\right)}+\frac{ab}{2\left(ab+ca\right)}\right)}\)
\(=\frac{1}{2\sqrt{2}}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}=\frac{1}{2\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)
Từ đó ta có bất đẳng thức: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+a\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}\)(2) ; \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)(3)
Cộng theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+c\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)\(\le\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\)
Ta cần chứng minh\(\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\le\frac{3\sqrt{2}}{8}\)
Hay \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\le3\)
Áp dụng bất đẳng thức Bunhiacopxki ta được \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)
\(\le\sqrt{3\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}+\frac{a}{a+b}\right)}=3\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Sửa đề: \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)

Mình sẽ trình bày chi tiết lời giải như khi viết vào vở, rõ ràng từng bước nhé:
Bài toán: Cho \(a , b , c \geq 0 , \textrm{ }\textrm{ } a + b + c = 1\). Tìm giá trị nhỏ nhất của
\(P = \frac{1}{a^{2} + \frac{\left(\right. b - c \left.\right)^{2}}{4}} + \frac{1}{b^{2} + \frac{\left(\right. c - a \left.\right)^{2}}{4}} + \frac{1}{c^{2} + \frac{\left(\right. a - b \left.\right)^{2}}{4}} .\)
Lời giải:
Xét hạng tử thứ nhất:
\(a^{2} + \frac{\left(\right. b - c \left.\right)^{2}}{4} = \frac{\left(\right. 2 a \left.\right)^{2} + \left(\right. b - c \left.\right)^{2}}{4} .\)
Nhận xét rằng:
\(\left(\right. 2 a \left.\right)^{2} + \left(\right. b - c \left.\right)^{2} \leq \left(\right. a + b + c \left.\right)^{2} = 1^{2} = 1 ,\)
không đúng cho mọi \(a , b , c\). → Ta thử cách khác.
Cách 1: Thử giá trị đặc biệt
- Với \(a = b = c = \frac{1}{3}\):
\(P = \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} + \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} + \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} = 3 \cdot 9 = 27.\)
- Với \(\left(\right. a , b , c \left.\right) = \left(\right. 1 , 0 , 0 \left.\right)\):
\(P = \frac{1}{1^{2}} + \frac{1}{0^{2} + \left(\right. 0 - 1 \left.\right)^{2} / 4} + \frac{1}{0^{2} + \left(\right. 1 - 0 \left.\right)^{2} / 4} = 1 + 4 + 4 = 9.\)
Tương tự với \(\left(\right. 0 , 1 , 0 \left.\right)\) hoặc \(\left(\right. 0 , 0 , 1 \left.\right)\), đều có \(P = 9\).
Cách 2: Biện luận
Do \(a + b + c = 1\), giả sử \(a = 1 , b = c = 0\) thì \(P = 9\).
Nếu ba số dương và bằng nhau, \(P = 27 > 9\).
Dễ thấy khi các số phân bố đều, mẫu số nhỏ → giá trị lớn; còn khi dồn hết vào một biến, mẫu số lớn → giá trị nhỏ.
Suy ra giá trị nhỏ nhất của \(P\) đạt tại biên, khi một biến bằng 1, hai biến còn lại bằng 0.
Kết luận:
Pmin=9
dấu bằng xảy ra khi \(\left(\right. a , b , c \left.\right) = \left(\right. 1 , 0 , 0 \left.\right)\) hoặc hoán vị.
xin cái tickkkk=)
\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)
\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)
\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)