Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)
=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
mà a2+b2+c2+d2 \(\ge\)0
=> a+b+c+d \(⋮\)2
hay a+b+c+d là hợp số
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932
https://h.vn/hoi-dap/question/21757.html
bn vào link này là có nhé
Ta có: a2 + c2 = b2 + d2
( a2 + c2 ) - ( b2 + d2 ) = 0
( a2 + 2ac + c2 ) - ( b2 + 2bd + d2 ) = 2ac - 2bd
( a + c )2 - ( b + d )2 = 2( ac - bd )
a + c \(\equiv\) b + d ( mod 2 )
a + c + b + d \(⋮\) 2
Mà a + c + b + d > 2
Vậy a + b + c + d là hợp số
Gọi \(ƯCLN\left(a,b\right)=k\)
\(\Rightarrow\hept{\begin{cases}a=a1.k\\b=b1.k\end{cases}}\) \(ƯCLN\left(a1;b1\right)=1\)
Vì \(ac=bd\Rightarrow a1.k.c=b1.k.d\Rightarrow a1.c=b1.d\left(1\right)\)\(\Rightarrow a1.c⋮b1\)mà \(ƯCLN\left(a1;b1\right)=1\)\(\Rightarrow c⋮b1\Rightarrow c=b1.m\left(2\right)\)
Thay (2) vào (1).Ta có:
\(b1.m.a1=b1.d\Rightarrow a1.m=d\)
Vậy \(a+b+c+d=b1.m+a1.m+k.a1+k.b1\)
\(=\left(a1+b1\right)\left(k+m\right)\)
Mà a1; b1; k; m là số nguyên dương nên \(\left(a1+b1\right)\left(k+m\right)\)là hợp số. Vậy a+b+c+d là hợp số.
Ta có:
\(a=\frac{bd}{c};b=\frac{ac}{d};c=\frac{bd}{a};d=\frac{ac}{b}\)
\(\Rightarrow\frac{bd}{c}+\frac{bd}{a}+\frac{ac}{b}+\frac{ac}{d}\)
\(=bd\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(=ac\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)( Vì ac = bd )
\(=ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
Khi đó: \(ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)chia hết cho a,c,ac,1
=> a + b + c + d là hợp số
Vậy a + b + c + d là hợp số.