K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Gọi \(ƯCLN\left(a,b\right)=k\)

\(\Rightarrow\hept{\begin{cases}a=a1.k\\b=b1.k\end{cases}}\)          \(ƯCLN\left(a1;b1\right)=1\)

Vì \(ac=bd\Rightarrow a1.k.c=b1.k.d\Rightarrow a1.c=b1.d\left(1\right)\)\(\Rightarrow a1.c⋮b1\)mà \(ƯCLN\left(a1;b1\right)=1\)\(\Rightarrow c⋮b1\Rightarrow c=b1.m\left(2\right)\)

Thay (2) vào (1).Ta có:

\(b1.m.a1=b1.d\Rightarrow a1.m=d\)

Vậy \(a+b+c+d=b1.m+a1.m+k.a1+k.b1\)

\(=\left(a1+b1\right)\left(k+m\right)\)

Mà a1; b1; k; m là số nguyên dương nên \(\left(a1+b1\right)\left(k+m\right)\)là hợp số. Vậy a+b+c+d là hợp số.

8 tháng 2 2018

Ta có:

\(a=\frac{bd}{c};b=\frac{ac}{d};c=\frac{bd}{a};d=\frac{ac}{b}\)

\(\Rightarrow\frac{bd}{c}+\frac{bd}{a}+\frac{ac}{b}+\frac{ac}{d}\)

\(=bd\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(=ac\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)( Vì ac = bd )

\(=ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

Khi đó: \(ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)chia hết cho a,c,ac,1

=> a + b + c + d là hợp số

Vậy a + b + c + d là hợp số.

1 tháng 11 2019

Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)

\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)

Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)

                        \(ac-bd=\left(a+b\right)\left(b+c\right)\)

Từ 3 điều trên ta suy ra đpcm

DD
16 tháng 7 2021

Câu hỏi của lep. - Toán lớp 8 - Học trực tuyến OLM

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932

https://h.vn/hoi-dap/question/21757.html

bn vào link này là có nhé

10 tháng 12 2018

Ta có: a2 + c2 = b2 + d2

( a2 + c2 ) - ( b2 + d2 ) = 0

( a2 + 2ac + c2 ) - ( b2 + 2bd + d2 ) = 2ac - 2bd

( a + c )2 - ( b + d )2 = 2( ac - bd )

a + c \(\equiv\) b + d ( mod 2 )

a + c + b + d \(⋮\) 2

Mà a + c + b + d > 2

Vậy a + b + c + d là hợp số