\(a^2+b^2=1\)và \(\frac{a^4}{c}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(\frac{d}{b^2}\) hay \(\frac{b^2}{d}\)hả bạn?

16 tháng 8 2018

Ta có: \(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)

Dấu = xảy ra khi \(\frac{a^2}{c}=\frac{b^2}{d}\)

Do đó: \(VT=\frac{a^2}{c}+\frac{b}{d^2}=\frac{d^2}{b}+\frac{b}{d^2}\ge2\sqrt{\frac{d^2}{b}.\frac{b}{d^2}}=2\)

4 tháng 3 2019

Ta có: \(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)

Tương tự: \(\frac{1}{b^2+1}==1-\frac{b^2}{b^2+1}\)

               \(\frac{1}{c^2+1}==1-\frac{c^2}{c^2+1}\)

               \(\frac{1}{d^2+1}==1-\frac{d^2}{d^2+1}\)

Đặt \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}=P\)

\(\Rightarrow P=4-\frac{a^2}{a^2+1}-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{d^2}{d^2+1}\)

Áp dụng BĐT AM-GM ta có:

\(P\ge4-\frac{a^2}{2a}-\frac{b^2}{2b}-\frac{c^2}{2c}-\frac{d^2}{2d}=4-\frac{a+b+c+d}{2}=4-\frac{4}{2}=4-2=2\)

Dấu " = " xảy ra \(\Leftrightarrow a^2=1;b^2=1;c^2=1;d^2=1\)

\(\Leftrightarrow a=b=c=d=1\)

4 tháng 3 2019

Cảm ơn bạn, giúp minh luôn câu 2 được k

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

21 tháng 7 2020

Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)

Cộng theo vế và a+b+c+d=1 ta có đpcm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)

\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)

21 tháng 7 2020

Bunyakovsky dạng phân thức

15 tháng 6 2017

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM

2 tháng 7 2017

Ta có  \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự  \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)

\(\frac{c}{1+d^2}\ge c-\frac{cd}{2}\)

\(\frac{d}{1+a^2}\ge d-\frac{ad}{2}\)

Lại có  \(ab+bc+cd+da\le\frac{\left(a+b+c+d\right)^2}{4}=\frac{4^2}{4}=4\)

Do đó  \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge\left(a+b+c+d\right)-\frac{ab+bc+cd+da}{2}\)

\(\ge4-\frac{4}{2}=2\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(a=b=c=d=1\)

1 tháng 8 2016

có thể áp dụng luôn công thức tổng quát của btp nhé
Tổng quát \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{x_1+x_2+...+x_n}\)(với x1,x2,...xn >0 )
phải c/m nhé 

1 tháng 8 2016

BTP :\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(với mọi abxy, x,y>0) đây còn đc cọi bđt cauchy schwarz )
c/m k có gì khó. nhân chéo quy đồng ( tự c/m nhé )
Đặt \(A=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)
Áp dụng liên tục btp ta được \(A\ge\frac{\left(1+1\right)^2}{a+b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2\right)^2}{a+b+c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)(dpcm)
dấu = xảy ra khi và chỉ khi a=b=c/2=d/4