\(2a+b-2\sqrt{cd}\) và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Xét tổng 2 số:

\(\left(2a+b-2\sqrt{cd}\right)+\left(2c+d-2\sqrt{ab}\right)=\left(a+b-2\sqrt{ab}\right)+\left(c+d-2\sqrt{cd}\right)+a+c\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)+\left(c-\sqrt{cd}+d-\sqrt{cd}\right)+a+c\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c\) > 0

Do đó, tồn tại 1 số dương trong 2 số \(2a+b-2\sqrt{cd}\)\(2c+d-2\sqrt{ab}\)(đpcm)

 

5 tháng 7 2016

Ta có : \(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{ad};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)

\(\Rightarrow x+z=2a+b-2\sqrt{cd}+2c+d-2\sqrt{ab}=\left(a-2\sqrt{ab}+b\right)+\left(c-2\sqrt{cd}+d\right)+a+c=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c>0\)

\(\Rightarrow x+z>0\) => Một trong hai số x và z phải có ít nhất một số dương (1) . Thật vậy , giả sử x<0 , z<0 => x+z<0 => vô lí.

Tương tự ta cũng có : \(y+t=\left(\sqrt{a}-\sqrt{d}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+b+d>0\) \(\Rightarrow y+t>0\) => Một trong hai số y và t phải có ít nhất một số dương (2)

Từ (1) và (2) ta có điều phải chứng minh.

nhấn vào đây nha: [Đại số] Một bài toán chứng minh sự tồn tại. | HOCMAI Forum - Cộng đồng học sinh Việt Nam

hì hì ok nha!! 7655685795325325454364561253454364565464575678568788978676

cộng 4 biểu thức lại ta có:

\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)+\left(d-2\sqrt{da}+a\right)+a+b+c+d\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+\left(\sqrt{d}-\sqrt{a}\right)^2+a+b+c+d>0\)

g/s 4 biểu thức đó đều âm=>tổng của chúng âm

=>1 trong 4 biểu thức có 1 biểu thức là số dương

11 tháng 8 2020

chỉ có 1 biểu thức là số dương.

26 tháng 10 2019

Áp dụng BĐT Bunhia- cốp -xki ta có

\(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)

Vậy maxM =2 \(\Leftrightarrow a=b=\frac{1}{2}\)

6 tháng 7 2015

tách ra mình làm cho. để cả đống này k làm đc đâu

11 tháng 5 2016

ý a, áp dụng BĐT cô si có 

   a + b >= căn ab     dấu = xay ra a=b

b + c >= căn bc         dau = xay ra khi b=c

c+a >= căn ac           dau = xay ra khi a=c

công tung ve vao. rut gon ta dc điều phải chung minh

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.