Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Rightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)+d\left(a+b\right)\left(b+c\right)=0\)( vì c khác a )
\(\Leftrightarrow abc-acd+bd^2-b^2d=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac-bd=0\)
\(\Leftrightarrow ac=bd\)
\(\Rightarrow abcd=\left(ac\right)\left(bd\right)=\left(ac\right)^2\)
Vậy ......................................
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Thỏa mãn.
Mình không chắc câu này lắm nhưng thôi giải dùm bạn vậy :((
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\)\(1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Leftrightarrow\)\(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\)\(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\)\(abc-acd+bd^2-b^2d=0\)
\(\Leftrightarrow\)\(\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\)\(ac-bd=0\Leftrightarrow ac=bd\left(b\ne d\right)\)
Vậy bạn tự kết luận nha
\(\Leftrightarrow1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{d}{d+a}=2\)
\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)+d\left(a-c\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)-d\left(c-a\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(bc+bd\right)\left(d+a\right)-\left(da+db\right)\left(b+c\right)=0\)
\(\Leftrightarrow bcd+bca+bd^2+bda-abd-adc-db^2-dbc=0\)
\(\Leftrightarrow bca-acd+bd^2-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac-bd=0\)
\(\Leftrightarrow ac=bd\)
\(\Leftrightarrow\left(ac\right)^2=abcd\)\(\left(đpcm\right)\)
dành cho người không hiểu bài trên
\(#huybip#\)
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Lời giải:
Điều kiện đề bài đã cho tương đương với:
\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)
\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)
\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)
\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)
\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)
\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)
\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)
Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$
$\Rightarrow bd=ac$
$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.
Ta có đpcm.
Lời giải:
Điều kiện đề bài đã cho tương đương với:
\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)
\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)
\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)
\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)
\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)
\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)
\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)
Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$
$\Rightarrow bd=ac$
$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.