Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}<\frac{a}{a+b}\)
Tương tự, \(\frac{b}{a+b+c}<\frac{b}{b+c}\); \(\frac{c}{a+b+c}<\frac{c}{c+a}\)
=> \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
=> \(\frac{a+b+c}{a+b+c}=1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)
+ ta có: Nếu phân số \(\frac{x}{y}<1\) thì \(\frac{x}{y}<\frac{x+m}{y+m}\)
Áp dụng với \(\frac{a}{a+b}<1;\frac{b}{b+c}<1;\frac{c}{c+a}<1\) ta có:
\(\frac{a}{a+b}<\frac{a+c}{a+b+c};\frac{b}{b+c}<\frac{b+a}{b+c+a};\frac{c}{c+a}<\frac{c+b}{c+a+b}\). cộng từng vế ta được
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{b+c+a} +\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)
Từ (*)(**) => \(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
=>đpcm