Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phải sửa đề thành\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)
\(\Rightarrow P=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{a}{2a}.4=2\)
mình nói hướng làm cho bạn thôi nhé
nếu bạn đặt \(\frac{a}{b}\)= \(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)=k vào thay vào rùi sẽ ra
Ta có : \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
Nếu a + b + c + d = 0
=> a + b = - c - d
b + c = - a - d
c + d = - b - a
d + a = - b - c
Khi đó \(P=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(b+a\right)}{b+a}=\frac{-\left(b+c\right)}{b+c}\)
\(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Nếu a + b + c + d \(\ne\)0
\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}=\frac{1}{b+a}=\frac{1}{b+c}\)
\(\Rightarrow c+d=d+a=b+a=b+c\)
\(\Rightarrow a=b=c=d\)
Khi đó \(P=1+1+1+1=4\)
Vậy nếu a + b + c + d = 0 thì P = - 4
nếu a + b + c + d \(\ne\)0 thì P = 4
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a/b = 1 => a = b
b/c = 1 => b = c
c/d = 1 => c = d
d/a = 1 => d = a
=> a = b = c = d
=> \(Q=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(k=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy k=3
Giải:
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3.\left(a+b+c+d\right)}{a+b+c+d}=3\)
\(\Rightarrow k=3\)
Vậy \(k=3\)
Ta có : \(\frac{2a+b+c}{a+b+c}=\frac{a+a+b+c}{a+b+c}=1+\frac{a}{a+b+c}\)
\(\frac{2b+c+d}{b+c+d}=\frac{b+b+c+d}{b+c+d}=1+\frac{b}{b+c+d}\)
\(\frac{2c+d+a}{d+a+c}=\frac{c+c+d+a}{d+a+c}=1+\frac{c}{d+a+c}\)
\(\frac{2d+a+b}{d+a+b}=\frac{d+d+a+b}{d+a+b}=1+\frac{d}{d+a+b}\)
Lại có:
M = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)
=> M \(>\frac{a}{a+b+c+d}+\frac{b}{b+c+d+a}+\frac{c}{d+a+c+b}+\frac{d}{d+a+b+c}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\)
=> M > 1 (1)
Và :
M = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)
Mà \(\frac{a}{a+b+c}< 1;\frac{b}{b+c+c}< 1;\frac{c}{d+a+c}< 1;\frac{d}{d+a+b}< 1\)
=> M \(< \frac{a+d}{a+b+c+d}+\frac{b+a}{b+c+d+a}+\frac{c+b}{d+a+c+b}+\frac{d+c}{a+b+c+d}\)
=> M \(< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}\)
=> M \(< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
=> M< 2 (2)
Từ (1) và (2) ta có 1 < M < 2. => M ko phải là số tự nhiên. Mà 1 là số tự nhiên => A ko phải là số tự nhiên
Vậy ..................(đpcm)
Vì mỗi số chia cho 3 số con lại đều bằng nhau
Suy ra mỗi số phải bằng nhau
Suy ra a/(c+b+d) = a/(a+a+a)=a/3a=1/3