Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!
Theo đề bài:
\(\dfrac{a}{b}=\dfrac{c}{d}=h\)
\(\Rightarrow\left\{{}\begin{matrix}a=bh\\c=dh\end{matrix}\right.\)
Khi đó:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bh+b}{dh+d}\right)^2=\left[\dfrac{b\left(h+1\right)}{d\left(h+1\right)}\right]^2=\dfrac{b^2}{d^2}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bh^2+b^2}{dh^2+d^2}=\dfrac{b^2\left(h^2+1\right)}{d^2\left(h^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\)
Ta có điều phải chứng minh
Cho a/b = b/c ( a,b,c khác 0) CM a mũ 2 + b mũ 2/ b mũ 2 + c mũ 2 = ( a+ 2018b) mũ 2/ (b+2018c) mũ 2
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)