Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét AED và BFC có :
AD = BC ( gt )
Góc A = góc C
Góc DAE = góc CFB ( vì góc A = góc B mà AE và BF là hai đường cao của hình thang cân ABCD)
Do đó tam giác AED = tam giác BFC suy ra DE = CF ( hai cạnh tương ứng )
Cho hinh thang can ABCD (AB//CD), E la giao diem cua 2 duong cheo. Chung minh rang EA=EB, EC=ED
Lời giải:
Xét tam giác $ADH$ và $BCK$ có:
$\widehat{AHD}=\widehat{BKC}=90^0$
$\widehat{ADH}=\widehat{BCK}$ (do $ABCD$ là htc)
$AD=BC$ (do $ABCD$ là htc)
$\Rightarrow \triangle ADH=\triangle BCK$ (ch-gn)
$\Rightarrow DH=CK$
Áp dụng định lý Pitago cho tam giác $ADH$ vuông:
$AH=\sqrt{AD^2-DH^2}=\sqrt{10^2-6^2}=8$ (cm)
Từ tam giác bằng nhau ở trên suy ra $BK=AH=8$ (cm)
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
gfvfvfvfvfvfvfv555