Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Hay \(a=b=c\)
Thay vào bài toán:
\(\left(2a+70b+1945c\right)^{2018}=\left(2a+70a+1945a\right)^{2018}=2017a^{2018}\)
Lại có:
\(2017^{2018}.a^{39}.b^{13}.b^{1975}=2017^{2018}.a^{39}.a^{13}.a^{1975}=2017^{2018}.a^{2018}=2017a^{2018}\)Ta có đpcm
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)
Ta có \(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=t\)
\(\Rightarrow\hept{\begin{cases}a=bt\\b=ct\\c=at\end{cases}}\Rightarrow\hept{\begin{cases}a=ct^2\\c=at\end{cases}}\Rightarrow a=at^3\Rightarrow t=1\)
Vậy thì a = b = c.
Khi đó: \(\left(3a+8b+2007c\right)^{2017}=\left(2018a\right)^{2017}=2018^{2017}.a^{2017}\)
\(2018^{2017}.a^3.b^{10}.c^{2004}=2018^{2017}.a^{2017}\)
Vậy nên ta có \(\left(3a+8b+2007c\right)^{2017}=2018^{2017}.a^3.b^{10}.c^{2004}\)
b\(^{10}\)c\(^{2004}\)
vừa mk viết lộn