Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )
Ta có: \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\)
\(P=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\frac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\frac{ca}{\sqrt{ca+\left(a+b+c\right)b}}\)
\(P=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\frac{ca}{\sqrt{\left(c+b\right)\left(a+b\right)}}\)
\(P=\sqrt{\frac{ab}{\left(a+c\right)}.\frac{ab}{\left(b+c\right)}}+\sqrt{\frac{bc}{b+a}.\frac{bc}{c+a}}+\sqrt{\frac{ca}{c+b}.\frac{ca}{a+b}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{ca}{c+b}+\frac{ca}{a+b}\right)=\frac{\left(a+b+c\right)}{2}=1\)
Vậy Max P=1 khi \(a=b=c=\frac{2}{3}\)
\(P=\Sigma\dfrac{ab}{\sqrt{ab+2c}}=\Sigma\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\Sigma\dfrac{\sqrt{ab}.\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}.\Sigma\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\) \(=\dfrac{1}{2}.\left(a+b+c\right)=1\)
\(1,\)
Áp dụng BĐT Bunhiacopski:
\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)
Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)
\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)
Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
Thay \(c=2-\left(a+b\right)\Leftrightarrow P=2ab+c\left(a+b\right)=2ab+\left(a+b\right)\left[2-\left(a+b\right)\right]\)
\(=2ab+2\left(a+b\right)-a^2-b^2-2ab=2\left(a+b\right)-a^2-b^2=2-\left(a-1\right)^2-\left(b-1\right)^2\)
Mà \(\hept{\begin{cases}\left(a-1\right)^2\\\left(b-1\right)^2\end{cases}\ge0\forall a,b\inℝ\Rightarrow P=2-\left(a-1\right)^2-\left(b-1\right)^2\le2}\)
Dấu ''='' xảy ra \(\Leftrightarrow\) \(a=b=1\rightarrow c=0\)