K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 11 2020

\(a+b+c=1\Leftrightarrow a+b=1-c\Leftrightarrow\left(a+b\right)^3=\left(1-c\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=1-c^3-3c\left(1-c\right)\)

\(\Leftrightarrow3ab\left(a+b\right)=-3c\left(1-c\right)\)(vì \(a^3+b^3+c^3=1\))

\(\Leftrightarrow\left(a+b\right)\left(ab+c\right)=0\)(vì \(a+b=1-c\))

\(\Leftrightarrow\orbr{\begin{cases}a+b=0\\ab+c=0\end{cases}}\)

\(a+b=0\Rightarrow c=1\Rightarrow a=b=0\).

\(ab+c=0\)

Suy ra \(a+b-ab-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

+) \(a=1\Rightarrow b=c=0\)

+) \(b=1\Rightarrow a=c=0\)

Vậy \(\left(a,b,c\right)=\left(1,0,0\right)\)và các hoán vị. 

Khi đó  \(P=1\).

24 tháng 8 2021

Cám ơn bạn nhiều lắm yeu

4 tháng 6 2021

Ta có a + b + c = 6

=> (a + b + c)2 = 36

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 36

=> 12 + 2ab + 2bc + 2ca = 36

=> 2ab + 2bc + 2ca = 24

=> ab + bc + ca = 12 

Khi đó a2 + b2 + c2 = ab + bc + ca (= 12)

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca 

<=>  2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0 

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

=> a = b = c = 2 

Khi đó A = (2 - 3)2021 + (2 - 3)2021 + (2 - 3)2021

= -1 + (-1) + (-1) 

= -3

21 tháng 4 2021

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) 

Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)

=> a = b = c

\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)

\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)

= 0

 

1 tháng 8 2023

a)  A=x^2+4x+4=(x+2)^2.

Giờ ta tính giá trị của đa thức A với x=98:

A=(98+2)^2=100^2=10000

b)  B=x^3+9x^2+27x+27=(x+3)^3.

Thế x=-103 => (-103+3)^3=-1000000

c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.

Thế a,b,c vào được vậy 

C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0

d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á

 

d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)

=2023+2022+...+3+2+1+0

=2023*2024/2=2047276

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

12 tháng 3 2022

-Mình làm tắt được không bạn :/?

12 tháng 3 2022

-Sợ bạn không hiểu thôi.

25 tháng 2 2022

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

25 tháng 2 2022

nó là 1 bài mà

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)