Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)
\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{8}{a^2}+\frac{8}{b^2}+\frac{8}{c^2}=8\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
từ giả thiết 1 suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
lại có 1 + a2 \(\ge\)2a nên \(\frac{1}{1+a^2}\le\frac{1}{2a}\)
do đó \(\frac{3}{2}=\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
dấu bằng xảy ra khi a = b = c = 1.
vậy S = a + b + c = 3.
Đặt \(A=abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)\)
Do a; b; c > 0 => A > 0
Giả sử \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4a^2c^2-c^4a^2b^2}{A}\ge0\)( tự quy đồng rồi rút gọn nhé, làm chi tiết dài lắm )
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4a^2c^2-2c^4a^2b^2}{A}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2+b^2c^2\right)^2+\left(b^2c^2+c^2a^2\right)^2+\left(c^2a^2+a^2b^2\right)^2}{A}\ge0\)(đúng)
Vậy \(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)
Từng ý nhé !!!
\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(\frac{1}{abc}.3abc=3\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)
\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)
\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)
\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)
Xét \(a=b=c\) ta có :
\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)