Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo em biết thì n5 - n = n(n4 - 1) = n(n2 - 1)(n2 + 1) = (n - 1)n(n + 1)(n2 - 4) + 5(n - 1)n(n + 1) = (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)
Phải không ạ ?
Với lại, nếu là bài kiểm tra bình thường (dành cho mọi học sinh) thì tính chất một số chính phương khi chia cho 5 chỉ có số dư là -1, 0, 1 hình như phải chứng minh đấy ạ. Nhân đây chứng minh cho bạn ra đề kẻo bạn không hiệu :v
Ta xét 3 trường hợp như sau:
+) TH1: \(n\equiv0\left(mod5\right)\Rightarrow n^2\equiv0^2\left(mod5\right)\)
=> n2 \(⋮\) 5
+) TH2:
\(n\equiv\pm1\left(mod5\right)\Rightarrow n^2\equiv\left(\pm1\right)^2\left(mod5\right)\Rightarrow n^2\equiv1\left(mod5\right)\)
=> n2 chia 5 dư 1
+) TH3:
\(n\equiv\pm2\left(mod5\right)\Rightarrow n^2\equiv\left(\pm2\right)^2\left(mod5\right)\Rightarrow n^2\equiv4\equiv-1\left(mod5\right)\)
=> n2 chia 5 dư -1
Vì BCNN(6;15)=30
nên tập hợp các bội của 30 sẽ là giao của 2 tập bội của 6 và bội của 15
=>C=A giao B
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{a+1}+\frac{2b}{b+1}+\frac{3c}{c+1}\leq 1(*)\)
\((*)\Rightarrow \frac{1}{a+1}=1-\frac{a}{a+1}\geq \frac{2b}{b+1}+\frac{3c}{c+1}=\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{b^2c^3}{(b+1)^2(c+1)^3}}(1)\)
\((*)\Rightarrow \frac{1}{b+1}=1-\frac{b}{b+1}\geq \frac{a}{a+1}+\frac{b}{b+1}+\frac{3c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{abc^3}{(a+1)(b+1)(c+1)^3}}(2)\)
\((*)\Rightarrow \frac{1}{c+1}=1-\frac{c}{c+1}\geq \frac{a}{a+1}+\frac{2b}{b+1}+\frac{2c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{ab^2c^2}{(a+1)(b+1)^2(c+1)^2}}(3)\)
Lấy \((1).(2)^2.(3)^3\) rồi rút gọn ta suy ra \(ab^2c^3\leq \frac{1}{5^6}\)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{5}$
d/ \(B=180^0-\left(A+C\right)=75^0\)
\(\Rightarrow b=c=4,5\)
\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}=\frac{9}{4}\left(\sqrt{6}-\sqrt{2}\right)\)
e/ \(cosA=\frac{b^2+c^2-a^2}{2bc}\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}\approx23\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{433}{460}\Rightarrow B\approx19^043'\)
\(\Rightarrow C=180^0-\left(A+B\right)=...\)
f/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{11}{15}\Rightarrow A\approx42^050'\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{17}{35}\Rightarrow B\approx60^056'\)
\(C=180^0-\left(A+B\right)=...\)
a/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=-\frac{1}{2}\Rightarrow A=120^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(C=180^0-\left(A+B\right)=15^0\)
b/\(A=180^0-\left(B+C\right)=79^037'\)
\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\Rightarrow\left\{{}\begin{matrix}b=\frac{sinB}{sinA}.a\approx61\\c=\frac{sinC}{sinA}.a\approx102\end{matrix}\right.\)
c/\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow sinB=\frac{bsinA}{a}\approx0,6\Rightarrow B\approx36^052'\)
\(\Rightarrow C=180^0-\left(A+B\right)=75^045'\)
\(\frac{a}{sinA}=\frac{c}{sinC}\Rightarrow c=\frac{a.sinC}{sinA}\approx21\)
Áp dụng BĐT Cauchy:
\(a^6+a^6+a^6+a^6+a^6+1\ge6\sqrt[6]{a^{30}}=6a^5\)
\(b^6+b^6+b^6+b^6+b^6+1\ge6\sqrt[6]{b^{30}}=6b^5\)
\(c^6+c^6+c^6+c^6+c^6+1\ge6\sqrt[6]{c^{30}}=6c^5\)
Cộng vế với vế ta được:
\(5\left(a^6+b^6+b^6\right)+3\ge6\left(a^5+b^5+c^5\right)=18\)
\(\Rightarrow5\left(a^6+b^6+c^6\right)\ge15\Rightarrow a^6+b^6+c^6\ge3\)
\(\Rightarrow P_{min}=3\) khi \(a=b=c=1\)
Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)
\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)
\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)
Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)
2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)