Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, bài 384 sách nâng cao lớp 8 tập 2 trang 52
2, câu b bài 388 snc lớp 8
1, \(A=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{x^2-1}\)
\(=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9\left(1-x\right)\left(x-1\right)}{\left(x+1\right)\left(1-x\right)\left(x-1\right)}-\frac{8\left(x+1\right)\left(x-1\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}-\frac{16\left(1-x\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}\)
\(=\frac{9\left(1-x\right)\left(x-1\right)-8\left(x+1\right)\left(x-1\right)-16\left(1-x\right)}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)
\(=\frac{18x-9-9x^2-8x^2+8-16+16x}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17x^2+34x-17}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)
\(=\frac{-17\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17\left(x-1\right)}{\left(x+1\right)\left(1-x\right)}\)
\(\hept{\begin{cases}a+b=c+d\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\\a^2+b^2=c^2+d^2\end{cases}}\)
\(\Rightarrow2ab=2cd\Rightarrow ab=cd\Rightarrow\frac{a}{d}=\frac{b}{c}=k\Rightarrow\hept{\begin{cases}a=dk\\b=ck\end{cases}}\)
Xét \(a^2+b^2=c^2+d^2\Leftrightarrow\left(dk\right)^2+b^2=\left(ck\right)^2+d^2\Leftrightarrow d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)
\(\Leftrightarrow\left(d^2-b^2\right)\left(k^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}d^2-b^2=0\\k^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}d=\pm b\\k=\pm1\end{cases}}\Rightarrow\orbr{\begin{cases}a=\pm c\\a=\pm d;c=\pm b\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}d^{2005}=b^{2005};a^{2005}=c^{2005}\\a^{2005}=d^{2005};c^{2005}=b^{2005}\end{cases}\Rightarrow\orbr{\begin{cases}a^{2005}+b^{2005}=c^{2005}+d^{2005}\\a^{2005}+b^{2005}=c^{2005}+d^{2005}\end{cases}}}\)
\(\Rightarrow a^{2005}+b^{2005}=c^{2005}+d^{2005}\left(đpcm\right)\)
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn
\(\hept{\begin{cases}a+b+c=6\\a^2+b^2+c^2=12\end{cases}}\Rightarrow\hept{\begin{cases}\left(a+b+c\right)^2=36\\3\left(a^2+b^2+c^2\right)=36\end{cases}}\)
\(\Rightarrow\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Vì a+b+c=6 và a=b=c nên a=b=c=2 (đpcm)