Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Áp dụng Cauchy dạng cộng mẫu ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\left(1\right)\)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c}\left(2\right)\)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\left(3\right)\)
Cộng vế 3 bất đẳng thức (1);(2); và (3) ta được:
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Dấu "=" xảy ra khi: \(a=b=c\)
Học tốt!!!!
1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\) (1)
Thật vậy : BĐT (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng )
Vì vậy BĐT (1) đúng.
Áp dụng vào bài toán ta có:
\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh !
Bài 1 :
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)
Cộng theo từng vế
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)
Bài 1 : Đề cần có điều kiện a,b,c là các số thực dương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(=1\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( vì \(a+b+c=1\))
Áp dụng BĐT Cauchy cho bộ 3 số dương ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\end{cases}}\)
Khi đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=\frac{3\cdot3\cdot\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
Hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(đpcm)
b)\(\Sigma\frac{a}{b+c-a}=\Sigma\frac{a^2}{ab+bc-a^2}\)\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)(BĐT Svarxơ)\(\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2-\frac{1}{3}\left(a+b+c\right)^2}\)(BĐT Bunhiacopxki)\(=3\)(đpcm)
a)\(\Sigma\frac{a}{b+c}=\Sigma\frac{a^2}{ab+bc}\)\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)\(\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=1,5>1\)
Trước hết bạn chứng minh : \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\) (Chứng minh bằng biến đổi tương đương)
Áp dụng BĐT AM-GM ta có : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{9}{6-\left(a+b+c\right)}\ge\frac{9}{6-\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{9}{6-3}=3\)
Dễ thấy \(0< a,b,c< 2\)
Ta có:
\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\Leftrightarrow a\left(a-1\right)^2\ge0\)
Tương tự với các cái tương tự, ta được:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\)(Đpcm)
Dấu = khi a=b=c=1
https://olm.vn/hoi-dap/detail/12121415915.html
vô đi rồi k cho mk
Ta co:
\(\frac{a^2}{ab+ca-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+bc-c^2}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=3\)
Dau '=' xay ra khi \(a=b=c\)
a,b,c phải dương thì đề bài mới đúng.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge3.3\)(vì a+b+c=3)
\(\Leftrightarrow1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\ge9\)
\(\Leftrightarrow\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge6\)(1)
Mặt khác, \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)
Do đó bất đẳng thức (1) đúng mà các phép biến đổi trên là tương đương nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
Chúc bạn học tốt.