\(\frac{5.a^2+2.b^2-c^2}{2.a^2+3.b^2-2c^2}\)là........">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Đề có a:b:c = 3:4:5 thì bạn cứ thế a = 3 ; b = 4 ; c = 5 vô là tính được thôi :)

\(\frac{5\cdot a^2+2\cdot b^2-c^2}{2\cdot a^2+3\cdot b^2-2\cdot c^2}=\frac{5\cdot3^2+2\cdot4^2-5^2}{2\cdot3^2+3\cdot4^2-2\cdot5^2}=\frac{13}{4}\)

11 tháng 2 2017

a:b:c=3:4:5 => a/3 = b/4 = c/5

Đặt a/3 = b/4 = c/5 = k (k khác 0)

=> a=3k; b=4k; c=5k

Ta có:\(\frac{5a^2+2b^2-c^2}{2a^2+3b^2-2c^2}\)=\(\frac{5.\left(3k\right)^2+2.\left(4k\right)^2-\left(5k\right)^2}{2.\left(3k\right)^2+3.\left(4k\right)^2-2.\left(5k\right)^2}=\)\(\frac{45k^2+32k^2-25k^2}{18k^2+48k^2-50k^2}=\)\(\frac{52k^2}{16k^2}=\frac{13}{4}\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

2 tháng 6 2015

b)  áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2\cdot4^2}=\frac{a^2-b^2+2c^2}{2^2-3^2+2\cdot4^2}=\frac{108}{27}=4\)

\(\frac{a^2}{2^2}=4\Rightarrow a^2=4\cdot2^2=16\Rightarrow a=\sqrt{16}=4\)

\(\frac{b^2}{3^2}=4\Rightarrow b^2=4\cdot3^2=36\Rightarrow b=\sqrt{36}=6\)

\(\frac{2c^2}{2\cdot4^2}=4\Rightarrow2c^2=4\cdot2\cdot4^2=128\Rightarrow c^2=128:2=64\Rightarrow c=\sqrt{64}=8\)

vậy a = 4

b = 6

c = 8

2 tháng 6 2015

a)

a:b:c = 2:4:5

=> a/2 = b/4 =c/5

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2\cdot2}=\frac{b}{4}=\frac{c}{5}=\frac{2a-b+c}{2\cdot2-4+5}=\frac{7}{5}\)

\(\frac{2a}{2\cdot2}=\frac{7}{5}\Rightarrow2a=\frac{7\cdot2\cdot2}{5}=\frac{28}{5}\Rightarrow a=\frac{28}{5}:2=\frac{14}{5}=2,8\)

\(\frac{b}{4}=\frac{7}{5}\Rightarrow b=\frac{7\cdot4}{5}=\frac{28}{5}=5,6\)

\(\frac{c}{5}=\frac{7}{5}\Rightarrow c=\frac{7\cdot5}{5}=7\)

vậy a = 2,8

b = 5,6

c = 7

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

14 tháng 8 2020

a) \(A=\left|x+\frac{2}{3}\right|\ge0\)

Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)

b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)

Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)

c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)

Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)

Min F = 9 

\(\Leftrightarrow x\ge5\)

14 tháng 8 2020

Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3

Vậy GTNN của A là 0 khi x = -2/3

b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của B là 1/3 khi x = 0

c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0

d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9

Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)

TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)

TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)

Vậy GTNN của F là 9 khi \(-4\le x\le5\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

4 tháng 9 2020

a) Vì \(\left|x+\frac{2}{3}\right|\ge0\forall x\)

\(\Leftrightarrow A=2-\left|x+\frac{2}{3}\right|\le2\)

Max A = 2

\(\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=\frac{-2}{3}\)

b) Vì \(\left|\frac{2}{5}-x\right|\ge0\forall x\)

\(\Leftrightarrow B=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\le3\)

Max B = 3

\(\Leftrightarrow\left|\frac{2}{5}-x\right|=0\Leftrightarrow x=\frac{2}{5}\)

c) \(M=-3\left|x+4\right|\left(-8\right)=24\left|x+4\right|\ge0\)

Max C = 0

\(\Leftrightarrow\left|x+4\right|=0\Leftrightarrow x=-4\)

4 tháng 9 2020

a) Vì \(\left|x+\frac{2}{3}\right|\ge0\forall x\)

=> \(2-\left|x+\frac{2}{3}\right|\le2\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left|x+\frac{2}{3}\right|=0\)hay khi x = -2/3

Vậy GTLN của A là 2 khi x = -2/3

b) Vì \(\left|\frac{2}{5}-x\right|\ge0\forall x\)

=> \(3-\frac{5}{2}\left|\frac{2}{5}-x\right|\le3\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left|\frac{2}{5}-x\right|=0\)hay khi x = 2/5

Vậy GTLN của B là 3 khi x = 2/5

c) \(C=-3\left|x+4\right|\cdot\left(-8\right)\)

\(C=\left(-3\right)\left(-8\right)\left|x+4\right|\)

\(C=24\left|x+4\right|\)

Vì \(\left|x+4\right|\ge0\forall x\)

=> \(24\left|x+4\right|\le24\)

Dấu " = " xảy ra khi và chỉ khi |x + 4| = 0 => x = -4

Vậy GTLN của C là 24 khi x = -4

P/S : Câu c không chắc :>