K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2019

\(S=\dfrac{a^2}{\dfrac{1}{4}}+\dfrac{b^2}{\dfrac{1}{6}}+\dfrac{c^2}{\dfrac{1}{3}}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{3}}=12\)

\(\Rightarrow S_{min}=12\) khi \(\left\{{}\begin{matrix}4a=6b=3c\\a+b+c=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{2}{3}\\c=\dfrac{4}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Bài này bạn sử dụng PP chọn điểm rơi:

Áp dụng BĐT AM-GM:

\(4a^2+4\geq 8a\)

\(6b^2+\frac{8}{3}\geq 8b\)

\(3c^2+\frac{16}{3}\geq 8c\)

Cộng theo vế các BĐT trên thu được:

\(4a^2+6b^2+3c^2+12\geq 8(a+b+c)\)

\(\Leftrightarrow A\geq 8.3-12=12\)

Vậy \(A_{\min}=12\Leftrightarrow (a,b,c)=(1,\frac{2}{3}, \frac{4}{3})\)

12 tháng 5 2019

bu-nhi-a vào bn ak

3 tháng 11 2019

\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)

Rồi làm nốt.

3 tháng 11 2019

Sửa lại tí: 

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!

Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)

Vậy...

22 tháng 5 2020

Đặt \(x=a+b+2c;y=2a+b+c;z=a+b+3c\left(x,y,z>0\right)\)

Từ đó tính được: \(\hept{\begin{cases}a=z+y-2x\\b=5x-y-3z\\c=z-x\end{cases}}\)

Lúc đó \(A=\frac{4\left(z+y-2x\right)}{x}+\frac{\left(5x-y-3z\right)+3\left(z-x\right)}{y}-\frac{8\left(z-x\right)}{z}\)

\(=\frac{4z+4y}{x}-8+\frac{2x}{y}-1+\frac{8x}{z}-8\)

\(=\left(\frac{4y}{x}+\frac{2x}{y}\right)+\left(\frac{4z}{x}+\frac{8x}{z}\right)-17\)

\(\ge2\sqrt{\frac{4y}{x}.\frac{2x}{y}}+2\sqrt{\frac{4z}{x}.\frac{8x}{z}}-17=12\sqrt{2}-17\)(Theo BĐT Cô - si cho 2 số dương)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{4y}{x}=\frac{2x}{y}\\\frac{4z}{x}=\frac{8x}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\sqrt{2}\\z=x\sqrt{2}=2y\end{cases}}\Leftrightarrow\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}\)

Đặt \(\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}=k\left(k>0\right)\)thì \(\hept{\begin{cases}z=2k\\x=\sqrt{2}k\\y=k\end{cases}}\). Lúc đó \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\)

Vậy \(MinA=12\sqrt{2}-17\), đạt được khi \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\left(k>0\right)\)

28 tháng 5 2019

\(A=4a^2+6b^2+3c^2=4a^2+4+6b^2+\frac{8}{3}+3c^2+\frac{16}{3}-12\)

Áp dụng BĐT Cô - si cho các cặp số dương , với a ; b ; c > 0 , ta có : 

\(4a^2+4\ge8a;6b^2+\frac{8}{3}\ge8b;3c^2+\frac{16}{3}\ge8c\)

\(A\ge8a+8b+8c-12=8\left(a+b+c\right)-12=8.3-12=12\)

Dấu " = " xảy ra \(\Leftrightarrow a=1;b=\frac{2}{3};c=\frac{4}{3}\)

28 tháng 5 2019

Vì a,b,c>0

Bunhiacopxki cho 3 bộ số

\(\left(a+b+c\right)^2=\left(\sqrt{4}.a.\frac{1}{\sqrt{4}}+\sqrt{6}.b.\frac{1}{\sqrt{6}}+\sqrt{3}.c.\frac{1}{\sqrt{3}}\right)\le\left(4a^2+6b^2+3c^2\right)\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\)

\(\Leftrightarrow9\le\left(4a^2+6b^2+3c^2\right)\frac{3}{4}\)

\(\Leftrightarrow4a^2+6b^2+3c^2\ge9.\frac{4}{3}=12\)

Vậy Min A = 12 <=> a=1;b=2/3;c=4/3

NV
26 tháng 5 2019

\(N=4a^2+4+6b^2+\frac{8}{3}+3c^2+\frac{16}{3}-12\)

\(N\ge2\sqrt{16a^2}+2\sqrt{16b^2}+2\sqrt{16c^2}-12=8\left(a+b+c\right)-12=12\)

\(\Rightarrow N_{min}=12\) khi \(\left\{{}\begin{matrix}a=1\\b=\frac{2}{3}\\c=\frac{4}{3}\end{matrix}\right.\)

NV
13 tháng 5 2020

\(3^2=\left(a+b+c\right)^2=\left(\frac{1}{2}.2a+\frac{1}{\sqrt{6}}.\sqrt{6}b+\frac{1}{\sqrt{3}}.\sqrt{3}c\right)^2\)

\(\Rightarrow9\le\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4a^2+6b^2+3c^2\right)\)

\(\Rightarrow4a^2+6b^2+3c^2\ge\frac{9}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=12\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=3\\4a=6b=3c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(1;\frac{2}{3};\frac{4}{3}\right)\)

11 tháng 1 2021

Đặt \(\dfrac{b}{a}=x;\dfrac{c}{b}=y\).

Ta có: \(P=\dfrac{1}{\left(\dfrac{a+b}{a}\right)^2}+\dfrac{1}{\left(\dfrac{b+c}{b}\right)^2}+\dfrac{b}{a}.\dfrac{c}{b}.\dfrac{1}{4}\)

\(P=\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}+\dfrac{xy}{4}\).

Ta có bđt quen thuộc: \(\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}\ge\dfrac{1}{xy+1}\) (bạn xem cm ở đây).

Do đó \(P\ge\dfrac{1}{xy+1}+\dfrac{xy+1}{4}-\dfrac{1}{4}\ge1-\dfrac{1}{4}=\dfrac{3}{4}\).

Đẳng thức xảy ra khi x = y = 1 tức a = b = c. 

Vậy...

NV
11 tháng 1 2021

BĐT phụ kia có 1 cách chứng minh rất hay mà không cần đến biến đổi tương đương với mũ to:

\(\dfrac{1}{\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2}+\dfrac{1}{\left(1.1+\sqrt{xy}.\sqrt{\dfrac{y}{x}}\right)^2}\ge\dfrac{1}{\left(1+xy\right)\left(1+\dfrac{x}{y}\right)}+\dfrac{1}{\left(1+xy\right)\left(1+\dfrac{y}{x}\right)}=\dfrac{1}{1+xy}\)