\(a^2+b^2+c^2+2bc=4-\left(p-b\right)\left(p-c\right)\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

a,

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=2\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

b,

\(a+b+c=2p\Leftrightarrow p=\dfrac{a+b+c}{2}\)

\(\Leftrightarrow\left(p-a\right)^2+\left(p-b\right)^2+\left(p-c\right)^2=3p^2-2pa-2pb-2pc+a^2+b^2+c^2\)

\(=3\left(\dfrac{a+b+c}{2}\right)^2-2\cdot\dfrac{a+b+c}{2}\cdot a-2\cdot\dfrac{a+b+c}{2}\cdot b-2\cdot\dfrac{a+b+c}{2}\cdot c+a^2+b^2+c^2\)

\(=3p^2-\left(a+b+c\right)^2+a^2+b^2+c^2=3p^2-4p^2+a^2+b^2+c^2=a^2+b^2+c^2-p^2\)

30 tháng 6 2017

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\a-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)

Ta có:

\(x^2+y^2+z^2=\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2+2xz+2yz-2xy=0\)

\(\Leftrightarrow z^2+2xz+2yz+\left(x-y\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)

\(\Rightarrow z^2+2xz+2yz+\left(x-y\right)^2\ge0\)

Dấu = xảy ra khi \(x=y=z=0\)

Hay \(a=b=c\)

30 tháng 6 2017

\(VT=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca\)

\(VP=\left[\left(a+b\right)-2c\right]^2+\left[\left(b+c\right)-2a\right]^2+\left[\left(c+a\right)-2b\right]^2\)

\(=\left(a+b\right)^2-4\left(a+b\right)c+4c^2+\left(b+c\right)^2-4\left(b+c\right)a+4a^2+\left(a+c\right)^2-4\left(a+c\right)b+4b^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)

Nhìn vào thấy 2 vế có \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\) rút gọn luôn thì được

\(-4ab-4bc-4ca=-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)

\(\Rightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ac-\left(a+c\right)c+b^2=0\)

\(\Rightarrow ab-ac-bc+c^2+bc-ab-ac+a^2+ac-ab-bc+b^2=0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)

15 tháng 8 2018

Bài cuối hơi khó nhìn, bạn thông cảm nhé! ^^

undefinedundefined

15 tháng 8 2018

a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)

\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)

\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)

\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)

\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)

\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)

\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)

\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)

\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)

\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)

\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm