\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

Xét \(VP=4p.\left(p-a\right)=2p.2.\left(p-a\right)=2p.\left(2p-2a\right)=\left(a+b+c\right)\left(b+c-a\right)\)

\(ab+ac-a^2+b^2+bc-ab+bc+c^2-ac=2bc+b^2+c^2-a^2=VT\)

Vậy ta có đpcm

2 tháng 7 2016

2bc+b^2+c^2-a^2=(b+c)^2-a^2=(b+c-a)(b+c+a)=(2p-a-a)2p=(2p-2a)2p=2.2p(p-a)=4p(p-a)

7 tháng 8 2015

Vế phải =  (b + c)- a= (b + c - a). (b +c + a) =  (2p -a - a).2p = 2.(p -a).2p = 4p. (p- a) = Vế trái

vậy...

7 tháng 8 2015

bạn vào câu hỏi tương tự nhé  ^^

13 tháng 9 2018

Gọi  \(2bc+b^2 +c^2-a^2=VT\)

và \(4p\left(p-a\right)=VP\)

Biến đổi VP ta có :

\(4p\left(p-a\right)=2p\left(2p-2a\right)\)

\(=\left(a+b+c\right)\left(b-c-a\right)\)

\(=2bc+b^2+c^2-a^2=VT\)  (đpcm)

Vậy ......

13 tháng 9 2018

Ta có: \(a+b+c=2p\)

\(\Rightarrow b+c=2p-a\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)

\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

Vậy....

15 tháng 9 2018

Ta có :

VT = \(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(b+c-a\right)\left(b+c+a\right)\)

\(=\left(b+c+a-2a\right).2p\)

\(=\left(2p-2a\right).2p\)

\(=4p\left(p-a\right)=VP\)

\(\left(đpcm\right)\)

Y
4 tháng 6 2019

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(a+b+c\right)\left(b+c-a\right)\)

\(=2p\left(a+b+c-2a\right)\)

\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)

4 tháng 6 2019

biến đổi vế phải ta được:

4p(p -a ) = 4p\(^2\)-4pa

=(2p)\(^2\)-2p.2a

=(a+b+c)\(^2\)-2a(a+b+c)

=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)

=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)