K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc

ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc

ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0

(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0

ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0

(b+c)(ab+ac+bc+a^2)=0

(b+c)(a+b)(a+c)=0

*th1:b+c=0=> b=-c

=> b^2017 +c^2017 =0 

mà a^2017 +b^2017 +c^2017=1

=>a^2017=1 => a=1 

thay vào A rồi dc A=1 

các th khác tương tự

27 tháng 12 2018

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)

\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)

\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)

\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)

\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)

p/s: dài nhỉ =) 

NV
5 tháng 10 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=3\\b=3\\c=3\end{matrix}\right.\)

\(\Rightarrow\left(a-3\right)^{2017}\left(b-3\right)^{2018}\left(c-3\right)^{2019}=0\)

4 tháng 9 2020

mn oi giúp tớ với 

30 tháng 7 2017

thiếu đề bài rồi 

30 tháng 7 2017

Cái đề là  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}???\)

NV
20 tháng 1 2019

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)

15 tháng 2 2019

a)Ta có: a3 + b3 + c3 = 3abc

=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)

=>Có 2 trường hợp 

a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0 

Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c

=>để (a-b)2 + (b-c)2 + (c-a)2 = 0

=>a=b=c

Thay trường hợp a=b=c vào P

=> (2017 +1)(2017+1)(2017+1)=20183

b)Tương tự a+b+c=0

=> a3 + b3 + c3 = 3abc

=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)

\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

\(A=\frac{3abc}{abc}=3\) Do (a+b3 + c3=3abc thay vào)