Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)
\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)
Đến đây dễ rồi để YẾN tự làm
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Áp dụng BĐT AM-GM cho 2 số dương, ta có:
\(\left(b+3c\right)+4\ge2\sqrt{4\left(b+3c\right)}=4\sqrt{b+3c}\\ \)
\(\Rightarrow\sqrt{b+3c}\le\frac{b+3c+4}{4}\)
\(\Rightarrow a\sqrt{b+3c}\le\frac{ab+3ac+4a}{4}\)
Tương tự ta có \(b\sqrt{c+3a}\le\frac{bc+3ab+4b}{4}\)
\(c\sqrt{a+3b}\le\frac{ac+3bc+4c}{4}\)
\(\Rightarrow a\sqrt{b+3c}+b\sqrt{c+3a}+c\sqrt{a+3b}\le\)\(\frac{4\left(ab+bc+ca\right)+4\left(a+b+c\right)}{4}\)\(=\frac{4\left(ab+bc+ac\right)+12}{4}\)
Ta có bổ đề:3(ab+bc=ca) \(\le\)(a+b+c)^2 => 3(ab+bc+ca) \(\le9\)=> \(\text{(ab+bc+ca)}\le3\)
=>\(a\sqrt{b+3c}+b\sqrt{c+3a}+c\sqrt{a+3b}\le\)\(\frac{4.3+12}{4}=6\left(đpcm\right)\)
Dấu "=" xảy ra <=>a=b=c=1
Lời giải:
a)
Áp dụng bất đẳng thức AM-GM:
\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)
\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)
\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)
Dấu bằng xảy ra khi \(x=1\)
b)
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)
\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)
Dấu bằng xảy ra khi
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)
\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)
Do đó dấu bằng không xảy ra
Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)