Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
Ta có: \(a^2,b^2,c^2\le1\Leftrightarrow-1\le a,b,c\le1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge0\left(1\right)\)
Ta lại có: \(\frac{\left(a+b+c+1\right)^2}{2}\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow\frac{1+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow ab+bc+ca+a+b+c+1\ge0\left(2\right)\)
Lấy (1) + (2) vế theo vế ta được
\(abc+2\left(ab+bc+ca+a+b+c+1\right)\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=0\\c=-1\end{cases}}\) và các hoán vị của nó
2(1+a+b+c+ab+bc+ac)
=2(a^2+b^2+c^2+ab+bc+ac)
=(a^2+b^2+c^2+2ab+2bc+2ac)+2(a+b+c) +1
=(a+b+c)^2+2(a+b+c)+1
=(a+b+c+1)^2 >= 0
đúng thì cho 1 tíck nhé
Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)
Ta lại có (a+b+c)2=a2+b2+c2
=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2
=> 2(ab+bc+ac)=0=> ab+bc+ac=0
Ta cần chứng minh bài toán phụ x+y+z=0 thì
x3+y3+z3=3xyz
Ta thấy x+y+z=0=> x+y=-z
=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3
=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz
Áp dụng vào bài toán ta có
ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2
=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
=> đpcm
Ta cần chứng minh: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\Leftrightarrow\dfrac{a^2}{2}+b^2+c^2-ab-bc-ca>0\Leftrightarrow\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\) \(\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2}{12}+\dfrac{a^2}{6}-3bc>0\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) Mà \(a^3>36;abc=1\Rightarrow a^3>36abc\Rightarrow a^2>36bc\)
\(\Rightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) luôn đúng
Này Nguyễn Trọng Chiến, mk ko hiểu cái chỗ tách ra thành: \(\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\). Sao bn tách đc vậy??