Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)
\(\frac{b}{c^2}+\frac{1}{b}\ge2\sqrt{\frac{b}{c^2}\cdot\frac{1}{b}}=\frac{2}{c}\)
\(\frac{c}{a^2}+\frac{1}{c}\ge2\sqrt{\frac{c}{a^2}\cdot\frac{1}{c}}=\frac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đặt \(A=abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)\)
Do a; b; c > 0 => A > 0
Giả sử \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4a^2c^2-c^4a^2b^2}{A}\ge0\)( tự quy đồng rồi rút gọn nhé, làm chi tiết dài lắm )
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4a^2c^2-2c^4a^2b^2}{A}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2+b^2c^2\right)^2+\left(b^2c^2+c^2a^2\right)^2+\left(c^2a^2+a^2b^2\right)^2}{A}\ge0\)(đúng)
Vậy \(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Do a,b,c đối xứng , giả sử \(a\ge b\ge c\) \(\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Trư - bê - sép , ta có :
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{b+c}\ge\frac{a^3+b^3+c^3}{3}.\left(\frac{a}{b+C}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
\(vậy\) \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)( Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Chebyshev như vầy nhé :
Ta có :
\(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Áp dụng bất đẳng thức Nesbit , ta có :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Suy ra : \(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{3}{2}\)
<=> \(\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{1}{2}\)
Đẳng thức xảy ra <=> a = b = c = \(\frac{1}{\sqrt{3}}\)