K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

Sửa đề \("="\rightarrow"+"\)

Áp dụng BĐT cauchy, ta có:\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\\ \Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab^2c+abc+ab}+\dfrac{b}{abc+ab+b}\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow a=b=c=1\)

 

24 tháng 12 2021

Ghi Cô Si cho dễ hiểu chí

 

26 tháng 12 2021

a: \(=2\sqrt{3}-2+10+5\sqrt{3}+3+\sqrt{3}=8\sqrt{3}+11\)

8 tháng 4 2021

b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)

\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )

mà \(a^2+b^2+c^2\ge ab+bc+ac\)

\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm ) 

9 tháng 5 2021

1.

Điều kiện x \ge \dfrac14.

Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0

\Leftrightarrow \left[\begin{aligned} & x =\dfrac12\\ & \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 = 0\\ \end{aligned}\right.

Với x \ge \dfrac14 ta có:

\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} > 0

- \dfrac2{\sqrt{4x-1}+1} \ge -2

x + 2 > 2.

Suy ra \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 > 0.

Vậy phương trình có nghiệm duy nhất x = \dfrac12.

2.

Đặt P = \dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b}

Áp dụng bất đẳng thức Cauchy cho hai số dương \dfrac{9a^3}{b + 2c} và (b+2c)a ta có

\dfrac{9a^3}{b+2c} + (b+2c)a \ge 6a^2.

Tương tự \dfrac{9b^3}{c+2a} + (c+2a)b \ge 6b^2\dfrac{9c^3}{a+2b} + (a+2b)c \ge 6c^2.

Cộng các vế ta có 9P + 3(ab+bc+ca) \ge 6(a^2+b^2+c^2).

Mà a^2+b^2+c^2 \ge ab+bc+ca = 4 nên P \ge 1 (ta có đpcm).

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

15 tháng 9 2023

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.

5 tháng 6 2023

b) (4√x + 4)/(x + 2√x + 5) ≥ 1

⇔ (4√x + 4)/(x + 2√x + 5) - 1 ≤ 0

Do x ≥ 0 ⇒ x + 2√x + 5 > 0

⇒ (4√x + 4)/(x + 2√x + 5) - 1 ≤ 0

⇔ (4√x + 4) - (x + 2√x + 5) ≤ 0

⇔ 4√x + 4 - x - 2√x - 5 ≤ 0

⇔ -x + 2√x - 1 ≤ 0

⇔ -(x - 2√x + 1) ≤ 0

⇔ -(√x - 1)² ≤ 0 (luôn đúng)

Vậy (4√x + 4)/(x + 2√x + 5) ≤ 1 với mọi x ≥ 0

a: \(P=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4\left(\sqrt{x}+1\right)}{x+2\sqrt{x}+5}\)

b: 4(căn x+1)>=4

x+2căn x+5>=5

=>P<=4/5<1

18 tháng 7 2021

a,\(x\ge\dfrac{3}{2}\)

\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)\(=>2\sqrt{x-1}=\sqrt{2x-3}\)

\(< =>4\left(x-1\right)=2x-3< =>4x-4=2x-3< =>x=0,5\left(ktm\right)\)

\(=>x\in\phi\)

b, \(đk:\left[{}\begin{matrix}x< 1\\x\ge\dfrac{3}{2}\end{matrix}\right.\)

\(=>\sqrt{\dfrac{2x-3}{x-1}}=4< =>\dfrac{2x-3}{x-1}=>4\left(x-1\right)=2x-3\)

\(< =>4x-4=2x-3< =>2x=1=>x=\dfrac{1}{2}\left(tm\right)\)

vậy,,,..

 

16 tháng 3 2021

Cảm ơn bạn nhé