Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $a+b+c=1$ nên:
\(a^2+b^2+abc-1=(a+b)^2-2ab+abc-1\)
\(=(a+b)^2-1+ab(c-2)=(1-c)^2-1+ab(c-2)\)
\(=-c(2-c)+ab(c-2)=c(c-2)+ab(c-2)=(c+ab)(c-2)\)
Do đó:
\(\frac{c+ab}{a^2+b^2+abc-1}=\frac{c+ab}{(c+ab)(c-2)}=\frac{1}{c-2}\)
Hoàn toàn tương tự với các phân thức còn lại, suy ra:
\(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{1}{c-2}+\frac{1}{a-2}+\frac{1}{b-2}=\frac{(a-2)(b-2)+(b-2)(c-2)+(c-2)(a-2)}{(a-2)(b-2)(c-2)}\)
\(=\frac{ab+bc+ac-4(a+b+c)+12}{(a-2)(b-2)(c-2)}=\frac{ab+bc+ac+8}{(a-2)(b-2)(c-2)}\)
Ta có đpcm.
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
Giải:
Biến đổi vế trái, ta được:
(a−1)(b−1)(c−1)(a−1)(b−1)(c−1)
=(ab−a−b+1)(c−1)=(ab−a−b+1)(c−1)
=abc−ab−ac+a−bc+b+c−1=abc−ab−ac+a−bc+b+c−1
=abc−ab−ac−bc+a+b+c−1=abc−ab−ac−bc+a+b+c−1
=abc−(ab+ac+bc)+(a+b+c)−1=abc−(ab+ac+bc)+(a+b+c)−1
Thay ab + ac + bc = abc và a + b + c = 1, ta được:
=abc−abc+1−1=abc−abc+1−1
=0
Đặt \(T=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\) (*)
Ta có: \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:
\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)
\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)
\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{ab}{ab+1+a}\)
\(=\frac{1+a+ab}{1+a+ab}=1=VP\) (Đpcm)