K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

A B C E F D

a)Vì ED//BF;BD//EF

\(\Rightarrow\)FEDB là hình bình hành

\(\Rightarrow\)FB=DE

Mà AE=FB\(\Rightarrow\)AE=DE

\(\Rightarrow\)\(\Delta AED\)là tam giác cân

b)Vì ED//AB\(\Rightarrow\widehat{EDA}=\widehat{BAD}\left(1\right)\)

\(\Delta AED\) là tam giác cân

\(\Rightarrow\widehat{EAD}=\widehat{EDA}\left(2\right)\)

Từ (1) và (2) suy ra AD la phan giac cua goc A

\(\Rightarrow\)

11 tháng 2 2016

Cho  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  (với  \(xyz\ne0\) ). Tính:  \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}\) 

                                                                               \(-----------------\)

Chú ý rằng nếu  \(x+y+z=0\)  thì  \(x^3+y^3+z^3=3xyz\)

Thật vậy,  \(x+y+z=0\)  \(\Rightarrow\)  \(z=-\left(x+y\right)\)

Do đó,  \(x^3+y^3+z^3=x^3+y^3+\left[-\left(x+y\right)\right]^3=-3x^2y-3xy^2=-3xy\left(x+y\right)=3xyz\)

\(\rightarrow\)  Nhận xét dưới đây cũng có thể suy ra ngay từ kết quả của bài trên:

\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Áp dụng nhận xét trên, ta có:

Nếu  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\) 

Do đó, \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)  với  \(xyz\ne0\)