K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2021

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Dấu = xảy ra khi a=b=c=1/3

5 tháng 4 2021

Áp dụng hệ quả bất đẳng thức Cô - si , ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)
\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\cdot1\ge9\)

\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

$a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:

$a-b=b-c=c-a=0$

$\Rightarrow a=b=c$

$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$

Khi đó:

$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$ 

Ta có đpcm.

26 tháng 1 2022

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

26 tháng 1 2022

 

 

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

6 tháng 12 2021

\(1,\text{Giả sử }a^2+b^2+c^2\ge ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\Leftrightarrow a=b=c\)

\(2,\forall a,b,c>0\\ \text{Áp dụng BĐT cosi: }\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)

Dấu \("="\Leftrightarrow a=b=c\)

16 tháng 7 2015

Cách khác:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)