\(A=\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 10 2020

Trước hết ta chứng minh BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Thật vậy:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}.3\sqrt[3]{a.b.c}.3\sqrt[3]{ab.bc.ca}\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Ta có:

\(A^2=\left(\sqrt{a+c}.\sqrt{\frac{2a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{a+b}.\sqrt{\frac{2b}{\left(a+b\right)\left(b+c\right)}}+\sqrt{b+c}\sqrt{\frac{2c}{\left(c+a\right)\left(b+c\right)}}\right)^2\)

\(\Rightarrow A^2\le\left(a+c+a+b+b+c\right)\left(\frac{2a}{\left(a+b\right)\left(a+c\right)}+\frac{2b}{\left(a+b\right)\left(b+c\right)}+\frac{2c}{\left(c+a\right)\left(b+c\right)}\right)\)

\(\Rightarrow A^2\le\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=9\)

\(\Rightarrow A\le3\)

\(A_{max}=3\) khi \(a=b=c\)

23 tháng 5 2019

\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)

\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)

\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)

Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)

\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)

\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)

\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

25 tháng 1 2018

ÁP DỤNG BĐT COSI TA CÓ :\(\sqrt{\frac{a}{b+c+2a}}\le\frac{a}{b+c+2a}+\frac{1}{4}\)

                                            \(\sqrt[]{\frac{b}{a+c+2b}}\le\frac{b}{a+c+2b}+\frac{1}{4}\)

                                            \(\sqrt[]{\frac{c}{a+b+2c}}\le\frac{c}{a+b+2c}+\frac{1}{4}\)

ĐẶT A=\(\sqrt[]{\frac{a}{b+c+2a}}+\sqrt[]{\frac{b}{a+c+2b}}+\sqrt[]{\frac{c}{a+b+2c}}\)

            \(\le\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}+\frac{3}{4}\)

        ÁP DỤNG BĐT :\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

          \(\Rightarrow\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

          \(\Rightarrow\frac{b}{a+c+2b}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

           \(\Rightarrow\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{c+b}\right)\)

  \(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}\right)+\frac{3}{4}\)

 \(\Rightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)+\frac{3}{4}\)

\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)+\frac{3}{4}\)

\(\Rightarrow A\le\frac{3}{2}\)

DẤU = XẢY RA\(\Leftrightarrow a=b=c\)

30 tháng 8 2020

Một lời giải khác: 

\(\left(\Sigma\sqrt{\frac{a}{b+c+2a}}\right)^2=\left(\Sigma\sqrt{\frac{a\left(a+2c+b\right)}{\left(a+2c+b\right)\left(b+c+2a\right)}}\right)^2\)

\(\le\left[\Sigma a\left(a+2c+b\right)\right]\left[\Sigma\frac{1}{\left(a+2c+b\right)\left(b+c+2a\right)}\right]=\Sigma\frac{a^2+3ab}{\left(a+2c+b\right)\left(b+c+2a\right)}\)

\(=\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\)

Cần chứng minh \(\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\le\frac{9}{4}\)

Chịu khó quy đồng :V

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

AH
Akai Haruma
Giáo viên
1 tháng 2 2020

Lời giải:
Với $a,b,c>0$ dễ thấy $0< \frac{a}{a+2b}< 1$

$\Rightarrow 0< \sqrt{\frac{a}{a+2b}}< 1$

$\Rightarrow \sqrt{\frac{a}{a+2b}}> \frac{a}{a+2b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}> \frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\geq \frac{(a+b+c)^2}{a^2+2ba+b^2+2cb+c^2+2ac}=1$

Do đó $\text{VT}>1$ (đpcm)

2 tháng 2 2020

Sử dụng BĐT AM-GM:

\(VT=\sum\limits_{cyc} \sqrt{\frac{a}{a+2b}} =\sum\limits_{cyc} \frac{a}{\sqrt{a(a+2b}}\geq \sum\limits_{cyc} \frac{2a}{2(a+b)}\)

\(=\sum\limits_{cyc} \frac{a^2}{a^2 +ab} \ge \frac{(a+b+c)^2}{a^2+b^2+c^2+ab+bc+ca} >\frac{(a+b+c)^2}{a^2+b^2+c^2+2ab+2bc+2ca} = 1\) (đpcm)

P/s: Em không chắc lắm.

17 tháng 11 2019

Áp dụng BĐT AM-GM với chú ý: \(a+b,b+c,c+a< a+b+c\) với mọi a, b, c >0.

Ta có:\(VT=\Sigma_{cyc}\frac{a}{\sqrt{a\left(a+2b\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+a+2b}{2}}=\Sigma_{cyc}\frac{a}{a+b}>\Sigma_{cyc}\frac{a}{a+b+c}=1\)

qed./.

19 tháng 5 2018

Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)

Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)

14 tháng 3 2018

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

14 tháng 3 2018

tiếp đi bạn huy