Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)
\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)
Cộng vế với vế ta có:
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Có : (a-b)^2>=0
<=>a^2+b^2>=2ab (2)
<=>a^2+b^2+2ab>=4ab
<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2 (3)
Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b (4)
Áp dụng bđt (2) ; (3) và (4) thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab
>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)+ \(\frac{1}{\left(a+b\right)^2}\)
= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM
Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2
Đặt \(a+b+c=t\) ta có \(a+b+c\le3\)
Đặt \(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow2P\ge\frac{18}{a+b+c}+3\left(a+b+c\right)=\frac{18}{t}+3t\)
ĐẾn đây nhóm thế nào hả ad
Do \(a;b;c>0\) và \(a^2+b^2+c^2=3\)
\(\Rightarrow0< a;b;c< \sqrt{3}\)
Ta cần CM: \(\frac{1}{a}+\frac{3}{2}a\ge\frac{a^2+9}{4}\)
Hay \(\frac{\left(a-1\right)^2\left(4-a\right)}{4a}\ge0\) Dúng do \(0>a< \sqrt{3}\)
Tương tự cộng lại ta được BđT cần cm
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Ta có:
\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)(1)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\left(2\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{16}{a+b+2c}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\le4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=16\)
\(\Leftrightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Sửa lại đề nha: abc = 1
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)
\(\Leftrightarrow\left(a+b+1\right)\left(b+c+1\right)+\left(b+c+1\right)\left(c+a+1\right)\)\(+\left(c+a+1\right)\left(a+b+1\right)\)
\(\le\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)+a+b+b+c+1\)\(+\left(b+c\right)\left(c+a\right)+b+c+c+a+1\)
\(+\left(c+a\right)\left(a+b\right)+c+a+a+b+1\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)\) \(+\left(c+a\right)\left(a+b\right)+a+b+b+c+c+a+1\)
\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow3\le\left(a+b+c\right)\left(ab+bc+ca-2\right)\)
Áp dụng bất đẳng thức Cauchy cho 3 số không âm:\(\left(a+b+c\right)\left(ab+bc+ca-2\right)\ge3.\sqrt[3]{a.b.c}.\left[3.\sqrt[3]{ab.bc.ca}-2\right]=3\)
\(\Rightarrow\)đpcm
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)