K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2a}}=\frac{2}{b}\); \(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\); \(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\)

Cộng lại:

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

NV
21 tháng 4 2020

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng vế với vế:

\(VT\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

10 tháng 1 2019

Ta có: \(\frac{a}{1+b^2}=a\left(\frac{1}{1+b^2}\right)=a\left(1-\frac{b^2}{1+b^2}\right)\)

Theo Cô si: \(1+b^2\ge2\sqrt{1b^2}=2b\)

Nên \(\frac{a}{1+b^2}\ge a\left(1-\frac{b^2}{2b}\right)=a\left(1-\frac{b}{2}\right)=a\left(\frac{2-b}{2}\right)=\frac{2a-ab}{2}\)

Thiết lập 2 BĐT tương tự và cộng theo vế suy ra:

\(VT\ge\frac{2a-ab}{2}+\frac{2b-bc}{2}+\frac{2c-ca}{2}\)

\(=\frac{2\left(a+b+c\right)-\left(ab+bc+ca\right)}{2}\)\(=3-\frac{ab+bc+ca}{2}\)

Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\) (tự c/m,không làm được ib)

Suy ra \(VT\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{\left(a+b+c\right)^2}{2}=3-\frac{\left(\frac{9}{3}\right)}{2}=\frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\)

14 tháng 1 2019

Sửa lại chỗ dòng thứ 2 từ dưới lên tí:

\(VT\ge\frac{ab+bc+ca}{2}\ge3-\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]}{2}=3-\frac{\left(\frac{9}{3}\right)}{2}=\frac{3}{2}^{\left(đpcm\right)}\)

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

24 tháng 2 2016

Dùng phương pháp côsi ngược dấu . 

ta có a/(1+b^2) =  a - ab^2/(1+b^2) >=  a - ab^2/2b = a - ab/2     ( 1) 

Chứng minh tương tự ta có: b/(1+c^2) >= b - bc/2  (2) ;   c/(1+a^2)  >= c - ac/2   (3) 

Từ (1); (2) và (3) suy ra a/(1+b^2) + b/(1+c^2) + c/(1+a^2) >= (a+b+c) - (ab+bc+ca)/2     

Lại có: a^2+b^2+c^2>= ab + bc + ca 

                                           

NV
5 tháng 6 2020

Đề bài sai, phản ví dụ: \(a=b=c=\frac{1}{2}\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=3>\frac{1}{2}\) (t/m)

Nhưng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\ne1\)

Chắc người ta yêu cầu chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

Cộng vế với vế:

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4.\frac{1}{2}=2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Dấu "=" xảy ra khi \(a=b=c=3\)