K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Trả lời

Theo đề ra ta có:

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2\cdot b^2+b^2\cdot c^2+c^2\cdot a^2\right)=4\left(ab+bc+ca\right)^2\)(1)

Lại có:

\(\left(ab+bc+ca\right)^2\)

\(=a^2\cdot b^2+b^2\cdot c^2+c^2\cdot a^2+2bc^2\cdot c+2abc^2+2a^2bc\)

\(=a^2b^2+b^2c^2+c^2a^2=2abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2=2abc\cdot0\)(Do a+b+c=0)

\(=a^2b^2+b^2c^2+c^2a^2\)

Thay \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)vào (1); ta có:

\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

Vậy \(a,b,c\inℕ\), a+b+c=0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)(đpcm)

P/s; có gì sai thì góp ý nhé!

24 tháng 4 2018

Sai đề nha bạn. Không tồn tại 3 số a, b, c > 0 thỏa mãn a + b + c = 0

27 tháng 4 2020

coi lại đề nhé

20 tháng 9 2015

bình phương lên sau đó chuyển vế là đc

20 tháng 5 2020

sai sai

4 tháng 8 2020

(ab+bc+ca)2=a2b2+b2c2+c2a2+2abbc+2bcca+2caac

=a2b2+b2c2+c2a2+2abc(a+b+c)

a+b+c=0

=>(ab+bc+ca)2=a2b2+b2c2+c2a2 (đpcm)

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2\left(ab.bc+ab.ac+bc.ac\right)\)

\(=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=a^2b^2+a^2c^2+b^2c^2\left(đpcm\right)\)

23 tháng 8 2020

Mk nghĩ là :

a) 6

b) 24

23 tháng 8 2020

a. \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow x=y=z\)( đpcm )