Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\left(\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\right).\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{a}{\left(c-a\right)\left(b-c\right)}+\frac{b}{\left(c-a\right)\left(a-b\right)}+\frac{b}{\left(c-a\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a\left(c-a\right)+a.\left(a-b\right)+b.\left(a-b\right)+b.\left(b-c\right)+c.\left(b-c\right)+c.\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{ac-a^2+ab-ac+ba-b^2+b^2-bc+bc-c^2+c^2-ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+0=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
đpcm
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(VT=\frac{c-b}{\left(a-b\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)}+\frac{b-a}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-\left(b-c\right)^2-\left(c-a\right)^2-\left(a-b\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-2a^2-2b^2-2c^2+2ab+2ac+2bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2ab-2ac+2bc-2b^2+2ab+2ac-2bc-2a^2-2ab+2ac+2bc-2c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2\left(a-b\right)\left(b-c\right)+2\left(a-b\right)\left(c-a\right)+2\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2}{c-a}+\frac{2}{b-c}+\frac{2}{a-b}\)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
\(VT=\frac{b\left(b-c\right)+a\left(c-a\right)}{ab\left(a-b\right)}=\frac{b^2-b.c+a.c-a^2}{a.b.\left(a-b\right)}=\)
\(=\frac{c.\left(a-b\right)-\left(a^2-b^2\right)}{a.b.\left(a-b\right)}=\frac{c.\left(a-b\right)-\left(a-b\right).\left(a+b\right)}{a.b.\left(a-b\right)}=\)
\(=\frac{\left(a-b\right)\left(c-a-b\right)}{a.b.\left(a-b\right)}=\frac{2c}{ab}=VP\left(dpcm\right)\) (Do a+b+c=0 => c=-a-b)