Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-2\left(\dfrac{c}{abc}+\dfrac{b}{abc}+\dfrac{a}{abc}\right)}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-2\cdot\dfrac{a+b+c}{abc}}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 1:
a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)
b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)
c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)
\(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
\(P=\sqrt{\dfrac{yz}{xy+xz}}+\sqrt{\dfrac{zx}{xy+yz}}+\sqrt{\dfrac{xy}{yz+zx}}\)
\(P=\dfrac{2yz}{2\sqrt{yz\left(xy+xz\right)}}+\dfrac{2zx}{2\sqrt{zx\left(xy+yz\right)}}+\dfrac{2xy}{2\sqrt{xy\left(yz+zx\right)}}\)
\(P\ge\dfrac{2yz}{xy+yz+zx}+\dfrac{2zx}{xy+yz+zx}+\dfrac{2xy}{xy+yz+zx}=2\)
Dấu "=" không xảy ra nên \(P>2\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1\)
\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
Tương tự: \(b+1=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\)
\(c+1=\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\)
\(VT=\sum\dfrac{\sqrt{a}}{a+1}=\sum\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\dfrac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(VP=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\dfrac{2}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2}}\)
\(=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(\Rightarrow VT=VP\) (đpcm)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm
b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm
Ta có:
\(VT=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)-2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2\left(\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{bca}\right)}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2\left(\dfrac{a+b+c}{abc}\right)}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)
\(\Rightarrow VT=VP\)
Vậy \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\) (Đpcm)