\(a,b,c>0;a+b+c\ge3\).CMR : 

\(\frac{a^3}{b+2c}+\frac{b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(A=\frac{a^4}{a\left(b+2c\right)}+\frac{b^4}{b\left(c+2a\right)}+\frac{c^4}{c\left(a+2b\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(b+2c\right)+b\left(c+2a\right)+c\left(a+2b\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{3\left(ab+bc+ca\right)}\)

\(\ge\frac{\left(ab+bc+ca\right)\left(\frac{\left(a+b+c\right)^2}{3}\right)}{3\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)  (ĐPCM)

Xảy ra khi \(a=b=c=1\)

24 tháng 7 2019

Áp dụng BĐT cosi ta có 

\(\frac{a^6}{b^3}+\frac{b^6}{c^3}+1\ge3\sqrt[3]{\frac{a^6.b^3}{c^3}}=\frac{3a^2b}{c}\)

\(\frac{b^6}{c^3}+\frac{c^6}{a^3}+1\ge\frac{3b^2c}{a}\)

\(\frac{c^6}{a^3}+\frac{a^6}{b^3}+1\ge\frac{3c^2a}{b}\)

Cộng 3 bĐt trên

=> \(2.VT+3\ge3\left(\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b}\right)=9\)

=> \(VT\ge3\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

26 tháng 5 2019

a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\)

NV
20 tháng 5 2020

\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)

Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế:

\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)

\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)

\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)

\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Dấu "=" xảy ra khi \(a=b=c\)

6 tháng 11 2019

\(\text{Σ}\frac{c}{2a+2b-c}=\text{Σ}\frac{c^2}{2ac+2bc-c^2}\)    (1)

Áp dụng BDT Cauchy-Schwarz, ta dc: 

\(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{4\left(ab+bc+ac\right)-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu = xảy ra <=> a=b=c

28 tháng 1 2018

Áp dụng BĐ0T \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x,y,z >0 có :

Vế trái \(\ge\frac{\left(a+b+c\right)^2}{a+b+c+2\cdot\left(a^2+b^2+c^2\right)}=\frac{9}{3+2\cdot\left(a^2+b^2+c^2\right)}\) (1) (vì a+b+c=3)

Có \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-2\cdot\left(a+b+c\right)+3\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-3\ge0\) (vì a+b+c=3)

\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)

Từ (1) và (2) => đpcm

k cho mk nhoa !!!!!!!!!!

28 tháng 1 2018

Ngược dấu rồi bạn ơi

Không mất tính tổng quát giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev ta có: \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)

\(\Rightarrow3\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)\(\Rightarrow a^3+b^3+c^3\le a^4+b^4+c^4\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\frac{a^4}{a^3+2a^2b^2}+\frac{b^4}{b^3+2b^2c^2}+\frac{c^4}{c^3+2a^2c^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=1=VP\)

Dấu "=" kh \(a=b=c=1\)

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)