Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình sửa lại đề bài của bạn chút : Cần chứng minh \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2\le ab\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)(đpcm)
b) Ta có : \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left(2\sqrt{1+a}\right)^2=\left(1.\sqrt{1+b}+1.\sqrt{1+c}\right)^2\le\left(1^2+1^2\right)\left(1+b+1+c\right)\)
\(\Leftrightarrow4\left(1+a\right)\le2\left(b+c+2\right)\Leftrightarrow4+4a\le2\left(b+c\right)+4\Leftrightarrow b+c\ge2a\)(đpcm)
Áp dụng BĐT cô si cho 3 số không âm ta có:
\(\frac{4a+1+1}{2}\ge\sqrt{4a+1}\Leftrightarrow\frac{4a+2}{2}\ge\sqrt{4a+1}\Leftrightarrow2a+1\ge\sqrt{4a+1}\)
Mà a>0 nên: \(2a+1>\sqrt{4a+1}\)
Tương tự với \(\sqrt{4b+1}\) và \(\sqrt{4c+1}\) ta có:
\(2b+1>\sqrt{4b+1};2c+1>\sqrt{4c+1}\)
=>\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}<2a+1+2b+1+2c+1\)
\(=2.\left(a+b+c\right)+3=2.1+3=5\)
=>điều phải chứng minh
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow2c+2\sqrt{ab+bc+ca+c^2}=0\)
Theo giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
Khi đó \(c=0?\)
Nhầm chỗ nào nhắc mình với nha mình cảm ơn nhiều
\(------------------------\)
Từ bất đẳng thức cơ bản sau: \(a^2+b^2+c^2\ge ab+bc+ca\) thì ta rút ra một bất đăng thức mới có dạng như sau:
\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
nên \(ab+bc+ca\le3\) \(\left(i\right)\)
\(---------------------\)
Ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
Thiết lập tương tự các mối quan hệ như trên theo sơ đồ hoán vị \(b\rightarrow c\rightarrow a\) như sau:
\(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)
Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) với lưu ý đã chứng minh ở \(\left(i\right)\) suy ra \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\ge\frac{3}{2}+3-\frac{3}{2}=3\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=1\)
mình cảm ơn ạ,đây là bđt svac xơ phải k ạ? bđt này mình chưa học,chỉ mới nghe qua.Bạn có thể làm bài theo cách dùng cosi đc không ạ?
\(a+b+c=1\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}=9\)
Nguyễn Hồng Nhung