K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Hãy chứng minh \(a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

Từ đề bài ta có :

\(a+b+c=0< =>\left(a+b+c\right)^2=0< =>a^2+b^2+c^2+2ab+2ac+2bc=0\)

Mà \(a^2+b^2+c^2=1\)  < = > 1 + 2 ( ab + ac + bc ) = 0

< = > 2 ( ab + ac + bc ) = -1 

< = > ab + ac + bc = -1/2

\(< =>\left(ab+ac+bc\right)^2=\left(-\dfrac{1}{2}\right)^2< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)

\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=\dfrac{1}{4}\)

Lại có từ \(a^2+b^2+c^2=1\)

\(< =>\left(a^2+b^2+c^2\right)^2=1< =>a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]=1\)

\(< =>a^4+b^4+c^4+2.\dfrac{1}{4}=1< =>a^4+b^4+c^4+\dfrac{1}{2}=1< =>a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\left(đpcm\right)\)

Ta có: \(a+b+c=0\)

\(\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(a^2+b^2+c^2=1\)

nên \(2ab+2ac+2bc=-1\)

\(\Leftrightarrow2\cdot\left(ab+ac+bc\right)=-1\)

\(\Leftrightarrow\left(ab+ac+bc\right)^2=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Ta có: \(a^2+b^2+c^2=1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4+\frac{1}{2}=1\)

hay \(a^4+b^4+c^4=1-\frac{1}{2}=\frac{1}{2}\)(đpcm)

24 tháng 3 2020

Ta có: a+b+c=0

=> (a+b+c)2 = \(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(a^2+b^2+c^2=1\) => 1 + 2(ab + bc + ac) = 0

=> 2(ab + bc + ac) = -1 => ab + bc + ac = \(\frac{-1}{2}\)

=> (ab + bc + ac)2 = \(\left(\frac{-1}{2}\right)^2\)

=> a2b2 + b2c2 + a2c2 + 2(ab2c+abc2+a2bc) = \(\frac{1}{4}\)

=> a2b2 + b2c2 + a2c2 + 2abc(a+b+c) = \(\frac{1}{4}\)

mà a+b+c = 0 => a2b2 + b2c2 + a2c2 = \(\frac{1}{4}\)

Do a2 + b2 + c2 =1

=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2)=1

=> a4 + b4 + c4 + 2.\(\frac{1}{4}\) = 1

=> a4 + b4 + c4 = 1 - 2.\(\frac{1}{4}\) =\(\frac{1}{2}\)

Bạn không hiểu chỗ nào thì hỏi lại mình nhé
13 tháng 8 2017

a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) (1)

CẦn chứng minh:

2(a^4 + b^4 + c^4) = (a² + b² + c²)²

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)

<=> 8.(ab²c + bc²a + a²bc) = 0

<=> 8abc.(a + b + c) = 0

<=> 0 = 0 (đúng), Vì a + b + c = 0

=> Đpcm

13 tháng 8 2017

a + b + c = 0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2.\left(ab+bc+ca\right)\left(1\right)\)

Cần phải chứng minh

2.(a4 + b4 + c4)=(a2+b2+c2)

\(\Leftrightarrow\) 2.(a4 - b4+c4)=a4+b4+c4+2.(a2b2+b2c2+c2a2)

\(\Leftrightarrow\)a4 +b4+c4=2.(a2b2+b2c2+c2a2)

\(\Leftrightarrow\) (a2 + b2 +c2 ) = 4(a2b2+b2c2 +c2a2)

\(\Leftrightarrow\) [ -2.(ab+bc+ca)2 ] = 4(a2b2+b2c2 +c2a2)

\(\Leftrightarrow\) 4(a2b2+b2c2 +c2a2)+8.(ab2c +bc2a+a2bc)=4.(a2b+b2c2+c2+a2

\(\Leftrightarrow\) 8(ab2c+bc2a+a2bc)=0

\(\Leftrightarrow\)8abc.(a+b+c)=0

\(\Leftrightarrow\) 0 =0 (đúng ) Vì a +b +c =0

=> ĐPCM

23 tháng 3 2020

Ta có: a+b+c=0
=> \(\left(a+b+c\right)^2=0\)
=> \(a^2+b^2+c^2+2ab+2bc+2ac=0\)
=> 2ab + 2bc + 2ac = -1 (do \(a^2+b^2+c^2=1\) )
=> \(\left(2ab+2bc+2ac\right)^2=\left(-1\right)^2\)
=> \(4a^2b^2+4b^2c^2+4a^2c^2+8ab^2c+8abc^2+8a^2bc=1\)

=>\(4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)=1\)

=>\(2\left(2a^2b^2+2b^2c^2+2a^2c^2\right)=1\) (do a+b+c=0)

=>\(2a^2b^2+2b^2c^2+2a^2c^2=\frac{1}{2}\)

Lại có: \(a^2+b^2+c^2=1\)
=> \(\left(a^2+b^2+c^2\right)^2=1\) = 1
=> \(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1\)

=> \(a^4+b^4+c^4+\frac{1}{2}=1\)
=> \(a^4+b^4+c^4=\frac{1}{2}\)

=> ĐPCM

23 tháng 3 2020

Ta có a+b+c=0=>\(\left(a+b+c\right)^2=0\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)(1)

\(a^2+b^2+c^2=1\)

Thay vào (1) có ab+bc+ca=\(-\frac{1}{2}\)

Ta có\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

=1-2\(\left[\left(ab+bc+ca\right)^2-2a^2bc-2ab^2c-2abc^2\right]\)

=1-2\(\left[\frac{1}{4}-2abc\left(a+b+c\right)\right]\)

=1-2\(\left(\frac{1}{4}-0\right)\)

=1-\(\frac{1}{2}\)=\(\frac{1}{2}\)(đpcm

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)