\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

Chứng mi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

ta có x+y+z=0 =>x^2=(y+z)^2
y^2=(x+z)^2
z^2=(x+y)^2
do đó ax^2+by^2+cz^2
=a(y+z)^2+b(x+z)^2+c(x+y)^2
=a(y^2+2yz+z^2)+b(x^2+2xz+z^2)
+c(x^2+2xy+y^2)
=x^2(b+c)+y^2(a+c)+z^2(a+b)
+2(ayz+bxz+cxy) (1)
thay b+c=-a ,a+c=-b , a+b=-c do a+b+c=0
và ayz+bxz+cxy=0 do a/x+b/y+c/z=0 vào (1) ta được
ax^2+by^2+cz^2 = -(ax^2+by^2+cz^2)
=> ax^2+by^2+cz^2=0

NV
15 tháng 2 2019

Ta có:

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{a+b}{x+y}=0\Leftrightarrow ay\left(x+y\right)+bx\left(x+y\right)+xy\left(a+b\right)=0\)

\(\Leftrightarrow axy+ay^2+bx^2+bxy+axy+bxy=0\)

\(\Leftrightarrow ay^2+2axy+2bxy+bx^2=0\)

Vậy:

\(ax^2+by^2+cz^2=ax^2+by^2-\left(a+b\right)\left(x+y\right)^2\)

\(=ax^2+by^2-\left(ax^2+2axy+ay^2+bx^2+2bxy+by^2\right)\)

\(=-\left(ay^2+2axy+2bxy+by^2\right)=-0=0\)

30 tháng 9 2018

Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)

\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

:Dbanh

19 tháng 6 2017

Ta có:(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2

=>a2x2+a2y2+a2z2+b2x2+b2y2+b2z2+c2x2+

c2y2+c2z2=a2x2+b2y2+c2z2+2axby+2axcz+

2bycz

=>a2y2+a2z2+b2x2+b2z2+c2x2+c2y2-2axby-2axcz-2bycz=0

=>(a2y2-2axby+b2x2)+(a2z2-2axcz+c2x2)+

(b2z2-2bycz+c2y2)=0

=>(ay-bx)2+(az-cx)2+(bz-cy)2=0

Vì (ay-bx)2\(\ge0\);(az-cx)2\(\ge0\);(bz-cy)2\(\ge0\)

nên =>(ay-bx)2+(az-cx)2+(bz-cy)2\(\ge0\)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)=>\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)(x;y;z\(\ne0\))

17 tháng 9 2017

cái chỗ dấu = xảy ra khi... cậu viết rõ hơn đc k? tớ ms vào nên k biết kí hiệu này lắm

Từ \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)

Từ \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)

Thay vào \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{-\left(b+c\right)}{-\left(y+z\right)}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow2byz+2cyz+bz^2+cy^2=0\)

\(\Rightarrow-\left(b+c\right).-\left(y+z\right)^2+by^2+cz^2=0\)

\(\Rightarrow\text{ax}^2+by^2+cz^2=0\)(dpcm)

Suy ngược nha k chắc

23 tháng 5 2019

từ x + y + z = 0 suy ra x2 = ( y + z )2 , y2 = ( x + z )2 , z2 = ( x + y )2 

do đó :

ax2 + by2 + cz2 = a ( y + z )2 + b ( x + z )2 + c ( x + y )2

= a ( y2 + 2yz + z2 ) + b ( x2 + 2xz + z2 ) + c ( x2 + 2xy + y2 )

= x2 ( b + c ) + y2 ( a + c ) + z2 ( a + b ) + 2 ( ayz + bxz + cxy )                   ( 1 )

thay b + c = -a ; a + c = -b ; a + b = -c do a + b +c = 0 và thay ayz + bxz + cxy = 0 do \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)vào ( 1 )

Ta được : ax2 + by2 + cz2 = -ax2 - by2 - cz2 

nên 2 ( ax2 + by2 + cz2 ) = 0 \(\Rightarrow\)ax2 + by2 + cz2 = 0

17 tháng 8 2017

1) Đặt \(B=x^2+y^2+z^2\)

\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)

Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

17 tháng 8 2017

2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)

Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

30 tháng 5 2015

Ta có x+y +z =0 =>x^2 =(y+z)^2 ;y^2=(x+z)^2;z^2=(y+x)^2

=>ax^2+by^2+cz^2=a(y+z)^2+b(x+z)^2+c(y+x)^2

=>(b+c)x^2+(a+c)y^2+(a+b)z^2+2(ayz+bxz+cyz)             (1)

Tu a+b+c=0=>-a=b+c;-b=a+c;-c=a+b                    (2)

Tu a/x+b/y+c/x =0=>ayz+bxz+cxy/xyz=0=>ayz+bxz+cxy = 0                   (3)

Thay (2) va (3 ) va (1) ta dc :ax^2+by^2+cz^2=-(ax^2+by^2+cz^2)=>ax^2+by^2+cz^2=0

(Hai số đối nhau mà bằng nhau chỉ có số 0)

30 tháng 5 2015

hình như bạn làm sai bạn ạ

 

Giả sử x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\left(ax+by+cz\right)^2\)

\(=\left(a^2k+b^2k+c^2k\right)^2\)

\(=k^2\cdot\left(a^2+b^2+c^2\right)^2\)

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(=\left(a^2+b^2+c^2\right)\left(k^2a^2+k^2b^2+k^2c^2\right)\)

\(=k^2\left(a^2+b^2+c^2\right)^2\)

Do đó: \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)