\(\le\)3

tìm GTNN của \(\frac{1}{1+a}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

\(A=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)

\(\Rightarrow A_{min}=\frac{3}{2}\) khi \(a=b=c=1\)

Ta có : \(\frac{a}{1+b^2}=\frac{a.\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\)

Mặt khác có : \(1+b^2\ge2b\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

Thiết lập tương tự với các phân thức còn lại ta có :

\(P\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

27 tháng 2 2020

3. a) \(A=x+\frac{1}{x-1}=x-1+\frac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=3\)

Dấu "=" \(\Leftrightarrow x-1=\frac{1}{x-1}\Leftrightarrow x=2\)

Min \(A=3\Leftrightarrow x=2\)

b) \(B=\frac{4}{x}+\frac{1}{4y}=\frac{4}{x}+4x+\frac{1}{4y}+4y\cdot-4\left(x+y\right)\)

\(\ge2\sqrt{\frac{4}{x}\cdot4x}+2\sqrt{\frac{1}{4y}\cdot4y}-4\cdot\frac{5}{4}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x}=4x\\\frac{1}{4y}=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

Min \(B=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

4. Chắc đề là tìm min???

\(C=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\ge2\sqrt{\left(a+b\right)\cdot\frac{1}{a+b}}+\frac{3}{1}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a+b=\frac{1}{a+b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

Min \(C=5\Leftrightarrow a=b=\frac{1}{2}\)

27 tháng 2 2020

1. Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+\left(\frac{1}{p-c}+\frac{1}{p-a}\right)\)

\(\ge\frac{4}{2p-a-b}+\frac{4}{2p-b-c}+\frac{4}{2p-a-c}\) \(=\frac{4}{c}+\frac{4}{a}+\frac{4}{b}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" \(\Leftrightarrow a=b=c\)

2. Áp dụng bđt Cauchy ta có :

\(a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b-1+1}{2}=\frac{ab}{2}\) . Dấu "=" \(\Leftrightarrow b-1=1\Leftrightarrow b=2\)

+ Tương tự : \(b\sqrt{a-1}\le\frac{ab}{2}\). Dấu "=" \(\Leftrightarrow a=2\)

Do đó: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\). Dấu "=" \(\Leftrightarrow a=b=2\)

8 tháng 7 2020

\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)

"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)

29 tháng 1 2020

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )

Dấu "=" \(\Leftrightarrow a=b\)

a) Áp dụng BĐT trên ta có:

\(\Sigma\left(\frac{1}{a^3+b^3+abc}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{a+b+c}\cdot\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{\left(a+b+c\right)\cdot abc}=\frac{1}{abc}\)

Dấu "=" khi \(a=b=c\)

b) \(\Sigma\left(\frac{1}{a^3+b^3+1}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{abc}=1\)

Dấu "=" khi \(a=b=c=1\)

c) \(\Sigma\left(\frac{1}{a+b+1}\right)\le\Sigma\left(\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)+\sqrt[3]{abc}}\right)=\Sigma\left[\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)}\right]\)

\(=\frac{1}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\cdot\left(\frac{1}{\sqrt[3]{ab}}+\frac{1}{\sqrt[3]{bc}}+\frac{1}{\sqrt[3]{ca}}\right)=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\cdot\sqrt[3]{abc}}=\frac{1}{\sqrt[3]{abc}}=1\)

Dấu "=" khi \(a=b=c=1\)

14 tháng 8 2019

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow17\cdot\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)

Tương tự ta có :

\(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c}\)

\(\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)

Cộng theo vế của 3 bđt ta được :

\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(\Leftrightarrow\sqrt{17}\cdot A\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

Áp dụng bất đẳng thức Cô-si :

\(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)

\(\ge2\sqrt{\frac{4\cdot16a}{a}}+2\sqrt{\frac{4\cdot16b}{b}}+2\sqrt{\frac{4\cdot16c}{c}}-15\left(a+b+c\right)\)

\(\ge16+16+16-15\cdot\frac{3}{2}=\frac{51}{2}\)

Do đó : \(\sqrt{17}\cdot A\ge\frac{51}{2}\)

\(\Leftrightarrow A\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Đề thiếu. Bạn xem lại đề.