\(P=\frac{a^3}{3a-ab-ca+2bc}+\frac{b^3}{3b-bc-ab+2ca}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

+ thêm bớt bc,ca,ab lần lượt cho P ta được

\(P=\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}+\frac{b^3}{3b+3ca-\left(ab+ac+bc\right)}+\frac{c^3}{3c+3ab-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si cho mẫu ta có

\(3a+3bc\ge2\sqrt{9abc}=6\sqrt{abc}\)

suy ra

\(\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+Bc\right)}\)

tương tự với các BDT còn lại suy ra :

\(P\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{b^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

đên đây easy chưa ? chung mẫu + lại với nhau ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si ta có

\(ab+bc+ca\le a^2+b^2+c^2\) luôn đúng thay vào ta được

ta có   \(a^2+B^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\) thêm bớt + hằng đẳng thức

thay vào và đổi dấu ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-9+2\left(ab+bc+Ca\right)}+3abc\)

có  \(ab+1\ge2\sqrt{ab}\)

\(ca+1\ge2\sqrt{ac}\)

\(bc+1\ge2\sqrt{bc}\)

\(\Rightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le ab+bc+ca+3\)

ta lại có

\(\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le a+B+c\left(cosi\right)\) suy ra

\(2\left(a+b+c\right)\le ab+bc+ca+3\Leftrightarrow6\le ab+Bc+ca+3\Leftrightarrow ab+bc+ca\ge3\)

  suy ra  

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-9+2\left(3\right)}=\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}\)

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}+3abc\)

ta có

\(a.a.a\le\frac{\left(a+a+a\right)^3}{27}\)

\(b.b.b\le\frac{\left(b+b+b\right)^3}{27}\)

\(c.c.c\le\frac{\left(c+c+C\right)^3}{27}\)

\(a^3+b^3+c^3\le\frac{\left(3a\right)^3+\left(3b\right)^3+\left(3c\right)^3}{27}\)

bạn ơi chắc là đề sai rồi làm sao có thể đi chứng minh được cái

\(a^3+b^3+c^3\le a+b+c\) 

bạn xem lại đi nha @@

13 tháng 7 2020

Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)

Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\)\(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)

Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)

Đẳng thức xảy ra khi a = b = c = 1

31 tháng 7 2019

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

31 tháng 7 2019

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

5 tháng 3 2018

từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)

cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)

\("="\)khi a=b=c=....

hic :( tự đăng rồi tự giải ra luôn :(((  sorry mn

18 tháng 12 2015

\(\frac{a+3}{3a+bc}=\frac{a+a+b+c}{\left(a+b+c\right)a+bc}=\frac{\left(a+b\right)+\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{1}{a+b}+\frac{1}{a+c}\)

Áp dụng bất đẳng thức Côsi dạng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) là ổn.

18 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

20 tháng 2 2017

Xét: \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét: \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

\(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\) ( đpcm )

20 tháng 2 2017

Ta có:

\(3a+bc=(a+b+c)a+bc=(a+c)(a+b)\)

\(\Rightarrow \sum \frac{a+3}{3a+bc}\)\(= \sum \frac{(a+c)+(a+b)}{(a+c)(a+b)}=2 \sum \frac{1}{a+b}\geq 2.\frac{9}{2(a+b+c)}=3\)

NV
15 tháng 7 2020

\(\frac{ab}{a+3b+2c}=\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Tương tự: \(\frac{bc}{b+3c+2a}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{b}{2}\right)\) ; \(\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{a+b}+\frac{c}{2}\right)\)

Cộng vế với vế:

\(A\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}+\frac{ab}{b+c}+\frac{ca}{b+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{a+b+c}{2}\right)\)

\(A\le\frac{1}{9}.\frac{3}{2}\left(a+b+c\right)=1\)

Dấu "=" xảy ra khi \(a=b=c=2\)

2 tháng 2 2020

Xét \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{cases}}\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

Mà \(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

6 tháng 3 2018

Ta có:
\(\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}=\frac{ab\left(a^2-b^2\right)}{a^3+b^3}=\frac{ab\left(a-b\right)}{a^2-ab+b^2}=\frac{a-b}{\frac{a}{b}+\frac{b}{a}-1}\ge\frac{a-b}{\frac{a}{b}+\frac{a}{a}-1}=\frac{b\left(a-b\right)}{a}\)
\(\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}=\frac{bc\left(b^2-c^2\right)}{b^3+c^3}=\frac{bc\left(b-c\right)}{b^2-bc+c^2}=\frac{b-c}{\frac{b}{c}+\frac{c}{b}-1}\ge\frac{b-c}{\frac{a}{c}+\frac{b}{b}-1}=\frac{c\left(b-c\right)}{a}\)
\(\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}=\frac{ca\left(c^2-a^2\right)}{c^3+a^3}=\frac{ca\left(c-a\right)}{c^2-ca+a^2}=\frac{c-a}{\frac{c}{a}+\frac{a}{c}-1}\ge\frac{c-a}{\frac{a}{c}+\frac{a}{a}-1}=\frac{c\left(c-a\right)}{a}\)
\(\Rightarrow\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}+\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}+\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}\ge\frac{b\left(a-b\right)+c\left(c-a\right)+c\left(b-c\right)}{a}=\frac{ab-b^2-ac+bc}{a}=\frac{\left(a-b\right)\left(b-c\right)}{a}\ge0\)
\(\Leftrightarrow\frac{a^3b}{a^3+b^3}+\frac{b^3c}{b^3+c^3}+\frac{c^3a}{c^3+a^3}\ge\frac{ab^3}{a^3+b^3}+\frac{bc^3}{b^3+c^3}+\frac{ca^3}{c^3+a^3}\left(đpcm\right)\)