K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

a3+b3+c3= (a+b+c).(a2+abc+b2+c2) 

(a+b+c)=0 -> a3+b3+c3=0

Vậy k/q =0 . Tick hộ nha

12 tháng 1 2016

ta có a^3+b^3+c^3-3abc

= (a+b)^3+c^3-3ab(a+b)-3abc

=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

=0 (vì a+b+c=0)

suy ra a^3+b^3+c^3=3abc=9

Vậy KQ là 9

 

17 tháng 12 2016

1/ \(a+b+c=11\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)

\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)

2/ \(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)

3/ \(x^4+3x^3y+3xy^3+y^4\)

\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)

\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)

18 tháng 12 2016

bạn alibaba nguyễn có thể làm lại giúp mình được không ?

18 tháng 11 2015

\(a+b+c=0\Rightarrow a+b=-c\)

Ta có: \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab.\left(-c\right)+c^3=3abc\)

Mà \(abc=3\left(gt\right)\)

Do đó: \(a^3+b^3+c^3=3.3=9\)

10 tháng 10 2015

1, Ta có \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
             \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)
     \(\Rightarrow\)  \(a^3+b^3+c^3=0.\left(a^2+b^2+c^2-ab-bc-ac\right)+3.\left(-2\right)=-6\)

4 tháng 8 2017

Giả sử: a = 2 ; b=3 ; c = -5 ( vì miễn a+b+c=0 là đk mà!^^)
Khi đó ta có biểu thức:
\(a^3+b^3+a^2c+b^2c-abc=2^3+3^3+2^2\left(-5\right)+3^2\left(-5\right)-2.3.\left(-5\right).\)
\(=8+27+\left(-20\right)+\left(-45\right)-\left(-30\right)\)
\(=35+30-20-45=65-65\)
\(=0\)

26 tháng 6 2017

Câu hỏi của Trần Dương Quang Hiếu - Toán lớp 8 | Học trực tuyến

12 tháng 7 2017

Ta có: \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=-c^3+c^3-3ab\left(-c\right)\) \(=3abc\) (Do a+b+c=0) . Mà abc=3 => a3+b3+c3=3.3=9

4 tháng 8 2017

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)

\(\Rightarrow A=a^3+b^3+a^2c+b^2c+abc\)

\(=a^3+b^3-\left(a+b\right)a^2-\left(a+b\right)b^2+abc\)

\(=a^3+b^3-a^3-a^2b-ab^2-b^3+abc\)

\(=-a^2b-ab^2-abc=-ab\left(a+b+c\right)\) = 0